

Road transport operation and infrastructure planning – case Finland

Heikki Tuomenvirta and Adriaan Perrels *Climate Change Research Unit Socie-economic impacts of climate and weather*

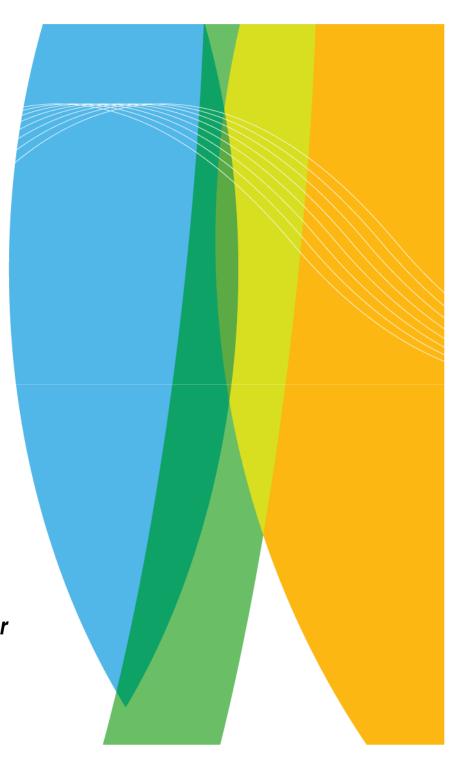
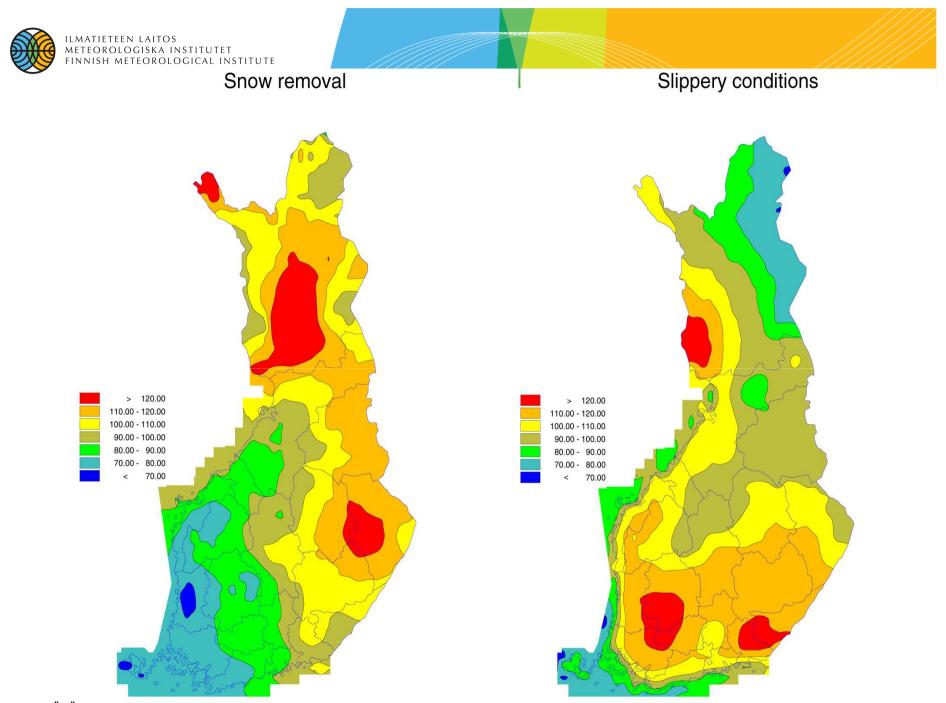



Table 3.16. Lengths of traffic networks in Finland. Sources: ¹Public Roads of Finland 1.1.2004. Finnra Statistics 2/2004. ²Publications of the Ministry of Transport and Communications 8/2004 (in Finnish): Strategy for the development and maintenance of Finland's transport infrastructure in 2004–2013. Background study. ³Finland's third report under the framework convention on climate change. 2001.

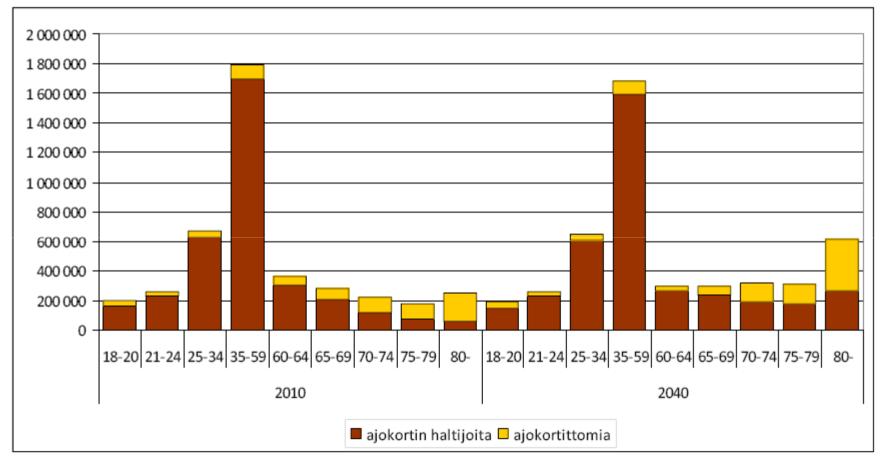
Traffic routes	Length (or number)
Public roads ¹ Highways Principal roads Other main roads Local roads Bridges Private roads ² Bicycle routes ³ Streets	78,137 8,574 4,686 28,437 36,441 13,979 (number) + ca. 5000 (streets, private, etc) 350,000 11,000 (in connection with public roads 4,508) 26,000
Railways ³	5,836
Waterways³	16,000 (fairways maintained by the Finnish Maritime Administration)
Number of airports ³	27

VENÄLÄINEN, A. and KANGAS, M., 2003. Estimation of winter road maintenance costs using climate data. Meteorol. Appl. 10, 69-73.

INCREASE OF TRAFFIC VOLUME 2006 -> 2030 (in percent)

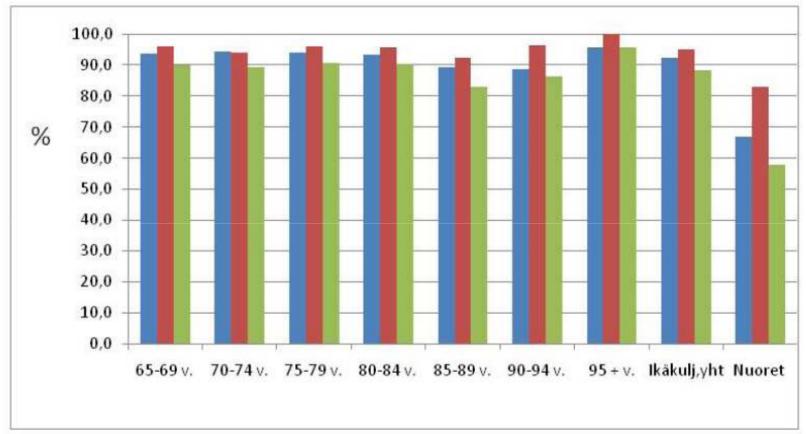
Region	Highway	Main	Regional	Connecting	Total
Uusimaa	1,45	1,40	1,34	1,13	1,37
Itä-Uusimaa	1,44	1,40	1,33	1,12	1,35
Varsinais-Suomi	1,39	1,35	1,28	1,08	1,28
Satakunta	1,25	1,21	1,15	0,97	1,16
Kanta-Häme	1,40	1,36	1,29	1,09	1,33
Pirkanmaa	1,42	1,38	1,31	1,11	1,35
Päijät-Häme	1,40	1,36	1,29	1,09	1,34
Kymenlaakso	1,22	1,19	1,13	0,96	1,17
Etelä-Karjala	1,20	1,17	1,10	0,93	1,14
Etelä-Savo	1,16	1,13	1,07	0,91	1,10
Pohjois-Savo	1,20	1,17	1,10	0,93	1,13
Pohjois- Karjala	1,18	1,15	1,09	0,92	1,10
Keski-Suomi	1,38	1,34	1,27	1,08	1,30
Etelä-Pohjanmaa	1,30	1,27	1,20	1,02	1,21
Pohjanmaa	1,29	1,26	1,19	1,01	1,20
Keski-Pohjanmaa	1,24	1,21	1,14	0,97	1,17
Pohjois-Pohjanmaa	1,38	1,37	1,27	1,08	1,30
Kainuu	1,16	1,13	1,07	0,90	1,09
Lappi	1,12	1,09	1,03	0,87	1,06
All Finland	1,33	1,31	1,23	1,04	1,25

INCREASE OF TRAFFIC VOLUME 2006 -> 2040 (in percent)


Liikenteen kasvu, % alle 0 0 - 15 16 - 30 31 - 50 yli 50

Source: (Road Administration 2007)

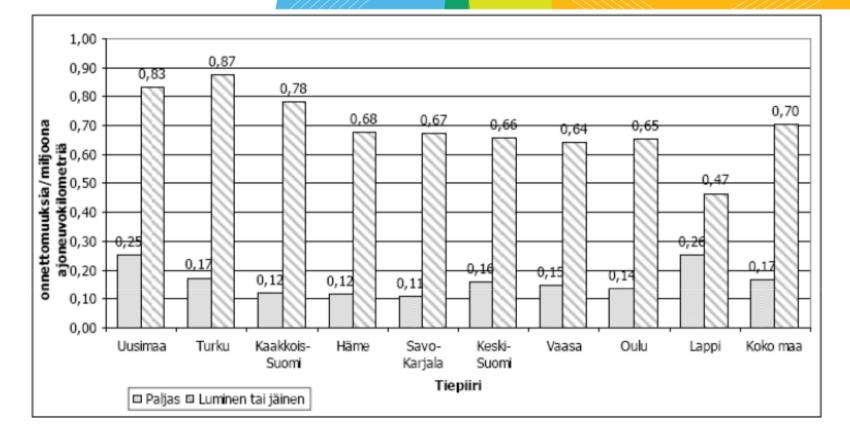
Holdership of driving licenses by age category in 2010 and 2040 (modelled)



Kuva 4.24 Ajokortin haltijoiden ja ajokortittomien määrä vuosina 2010 ja 2040.

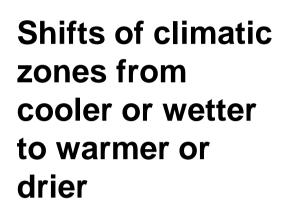
Source: Tiikkaja H. & Kalenoja H. (2010), Henkilöauton ajokortin haltijaryhmät Ennuste ajokortin haltijoista vuosille 2010–2040; Trafi 3/2010

Shares of elderly drivers without accidents and/or fines (in the previous year) by age category, and comparison with very young drivers

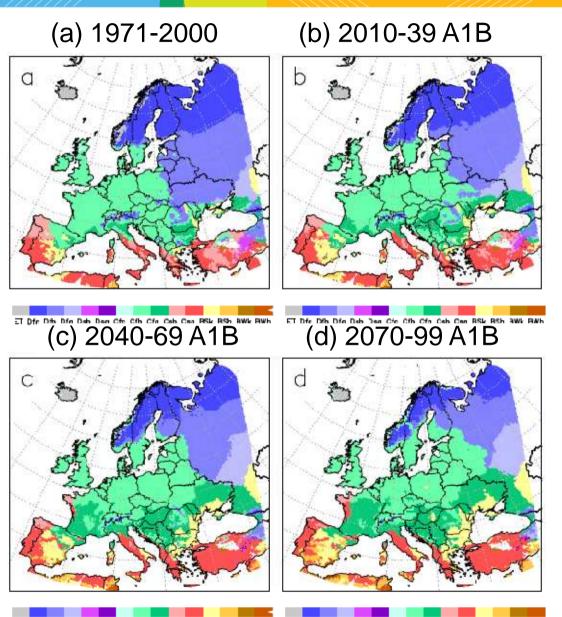


Kuva 2. Vahingoitta (sininen), rangaistuksitta (punainen) ja ilman kumpaakaan selvinneiden osuus prosentteina eri ikäryhmissä ja koko aineistossa.

Source: Mikkonen, V. (2010), Seniorikuljettajien seurantaindeksi, Trafi 5/2010

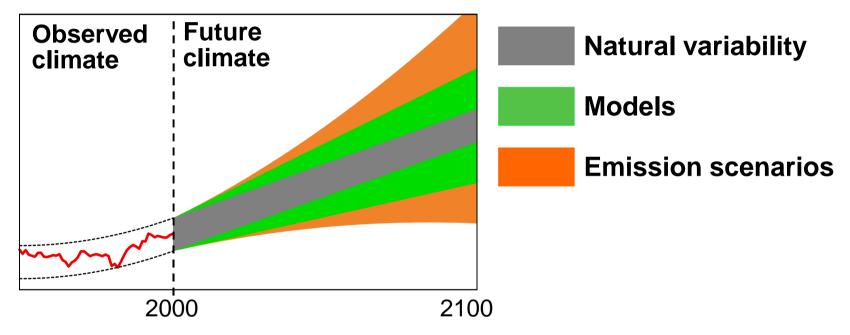

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Kuva 11. Liikennevahinkoon johtavien onnettomuuksien riski tienpinnan tilan mukaan tiepiireittäin. Aineistona liikennevahinkoon johtaneet korvatut vahingot talvikausina 2003 - 2006. (Salli et al. 2008).


Aggregate risk of motor vehicle collision (per million vehicle km) in Finland ("dry" road vs. icy/snowy road surface) (2003-2006).

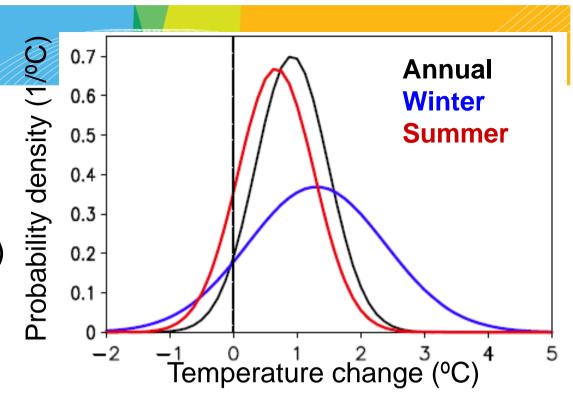
(a) Based on the
observational data set
(0.25° grid) from Haylock
et al. (2008)

(b-d) Based on CMIP3 GCM runs for A1B & the delta-change method


T Dfc Dfo Dfo Dso Dso Cfc Cfo Cfo Cso Cso BSk BSh BWk BWh

ET Dife Difp Difg Dab Dag Cife Cifb Cifa Cab Cag BSk BSh 3Wk BMh

Uncertainties in climate change schematically


LEVEL OF UNCERTAINTY	Near future	End of the century
Natural climate variability	+	+
Climate model sensitivity	(+)	++
Emission scenarios		++

Source: J. Räisänen (Univ. of Helsinki)

Probabilistic forecasts of temperature change in southern Finland (1971-2000 → 2011-2020)

• Accounts for natural variability and differences between climate models

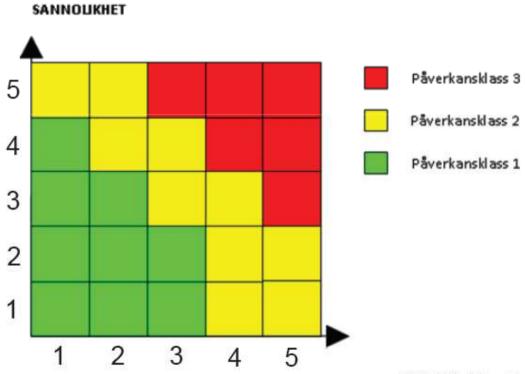
	Winter	Summer	Annual
Best estimate (°C)	1.3	0.7	1.0
5-95% uncertainty range (°C)	-0.5+3.1	-0.2+1.6	0.0+1.8
Probability of warming (%)	90%	90%	96%

Width of the distribution primarily determined by natural temperature variability: larger in winter than in summer.

Ref: Räisänen and Ruokolainen (2007)

ILMATIETEEN LAITOS METEOROLOGISKA IN FINNISH METEOROLO	Disadvantage	Direction of the impact unclear or a simultaneous disadvantage and advantage	Advantage
Finland's National Strategy for Adaptation to Climate Change (2005)	 The risk of collapse of railway beds and roads will increase Floods and heavy rains will damage the structures of road and rail networks, maintenance problems could be expected particularly on gravel roads The functionality of drainage arrangements based on today's design will be endangered Bridge and culvert structures are designed to convey present waterflows 	 The impacts may change the attractiveness of different forms of traffic The need for de-icing salt will increase in some places and decrease in others, so the total cost is unclear Ice and snow conditions may vary significantly between years 	+ + Thinning of the snow cover and shortening of the snow period will bring savings in winter maintenance to the road and rail network and at airports
	 The sensitivity of traffic to disturbances will increase The rectification of and preparation for functional disturbances will impose additional costs Increased need for antiskid treatment all over the country; for example, the need to apply de-icing salt to roads will extend to the north Windiness, storms and heavy rain will cause damage to overhead cable networks and breaks in underground cables 		

\sim


Anticipatory Reactive ILMATIETEEN LAIT METEOROLOGISKA FINNISH METEOR Public Administration and Inclusion of climate change in planning the transport sector's long-term planning* Securing the functionality of ٠ telecommunications networks (wired Finland's networks) ** National Research and Surveying of flood sensitive areas* **Strategy for** ٠ information Anticipatory systems and warning ٠ Adaptation systems for extreme events** to Climate Assessment of the ice situation in the ٠ Change Baltic Sea* (2005)Economic-Maintenance of the structures Taking more difficult traffic ٠ ٠ conditions into account in technical measures (road body, ditches, bridges and culverts) and condition of road planning and schedules network, particularly on smaller · Repair of storm damage to overhead cables roads and gravel roads as floods and rains increase and ground frost Increase of winter traffic in the diminishes** Baltic Sea PRINATE ROADS Maintenance of the structures Antiskid treatment of roads and ٠ (railway beds) and condition airports Repair of storm damage to the of railways while floods and ٠ rains increase and ground frost road and rail networks diminishes** Minimising the environmental hazards ٠ caused by antiskid treatments (alternatives to salt, planning of groundwater protection)** Normative New planning norms and Guidelines and definition of ٠ guidelines for road and railway tolerances for the duration of framework construction**/*** disturbances

Riskanalys

Sannolikhet	Ord	1 gång på
1	Extremt liten	100 år
2	Mycket liten	25 år -100 år
3	Liten	10 – 25 år
4	Viss	1 – 10 år
5	Påtalig	årligen
Konsekvens	Ord	Siffror
1	Mycket liten	< 10 Mkr
2	Liten	10- 50 Mkr
3	Stor	50- 100 Mkr
4	Mycket stor	100- 500 Mkr
5	Katastrofal	>500 Mkr

2008-12-29 Vägverket

Riskanalys för klimatförändringars påverkan på väghållningen

Påverkan av klimatförändringar och extrema väderhändelser	Sverige	Norge	Finland	Danmark	Island	Färöarna
Förändring av nederbörd och flöden						
Större skred och ras						1
Bortspolad väg och bro						
Översvänningar						1
Förändringar av temperatur						
Slitage på beläggningar						
Nedbrytning av vägöverbyggnad						
Vintertransporter på tjälad väg						
Nedbrytning av betongkonstruktionener			-			
Nedisning av broar						
Temperaturpåverkan på broar			1			
Vinterväghållning						
Stensprängning				i ()		
Förändring av vindhastigheter						
Storabroar och andra utsatta ställen						
Storamängder träd över vägar (typ Gudrun)				· · · · · · · · · · · · · · · · · · ·		
Stängning av högfjällsvägar						
Förändring av havsvattennivåer						
Tunnlar						
Vägar						
Färjelägen				1		

2008-12-29 Vägverket

Uppskattade kostnadsökningar för skador på grund av erosion, översvämning och skred/ras samt kostnader för förebyggande åtgärder.

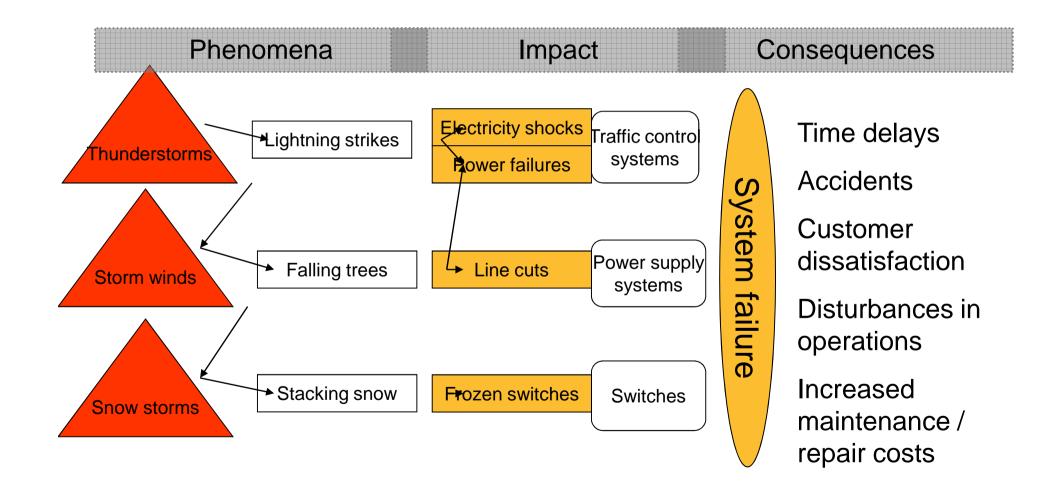
I beloppen ingår inte kostnader för mindre erosions- och översvämningsskador eller mindre skred och ras som åtgärdas genom normalt underhåll.

Skadetyp	Förebyggande åtgärder på kort sikt	Förebyggande åtgärder på lång sikt	Kostnadsökning för skador på lång sikt (utan åtgärder)
Större erosions- och översvämningsska dor (nuvarande skadekostn ca 65 Msek/år)	150-500 Msek	Totalt 1000-2000 Msek, förebyggande åtgärder mot större erosions- och över-	50-150 Msek/år
Skred och ras (nuvarande skadekostnad ca 15 Msek/år)	>200 Msek	svämningsskador samt skred och ras	20-50 Mkr/år
Stora skred (är för närvarande sällsynta)	COLLÁPSE		Ökat antal stora skred
Förtida utbyte av broar		Ca 720 Mkr under perioden ³⁾	

Norlander (2008)

Extreme Weather Impacts on European **Networks of Transport - EWENT**

Coordinator: Dr. Pekka Leviäkangas, VTT Transport & Logistics



Impact analysis – example railways

Goal and research strategy

The goal of EWENT project is to assess the impacts of extreme weather events on EU transport system. These impacts are monetised. EWENT will also evaluate the efficiency, applicability and finance needs for adoption and mitigation measures which will dampen and reduce the costs of weather impacts. The methodological approach is based on generic risk management framework that follows a standardised process from identification of hazardous phenomena (extreme weather), followed by impact assessment and closed by mitigation and risk control measures.

EWENT will start this by identifying the hazardous phenomena, their probability and consequences and proceed to assessing the expected economic losses caused by extreme weather when it impacts the European transport system, taking also into account the present and expected future quality of weather forecasting and warning services within Europe.

ROADIDEA 215455

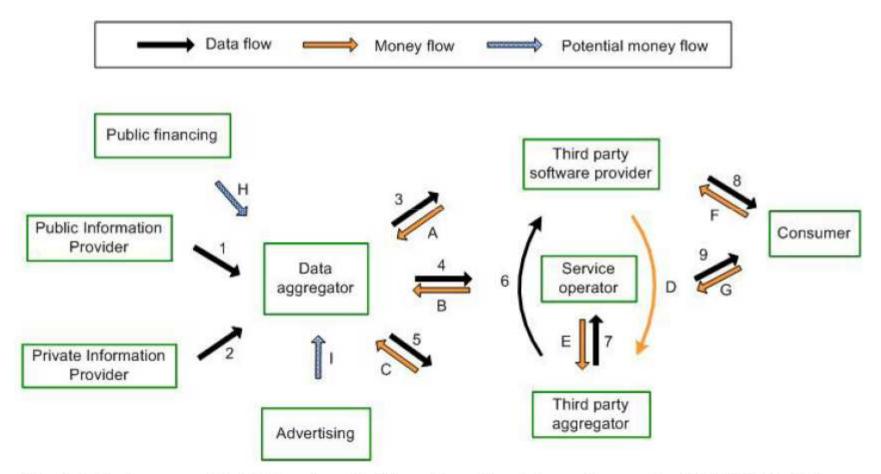
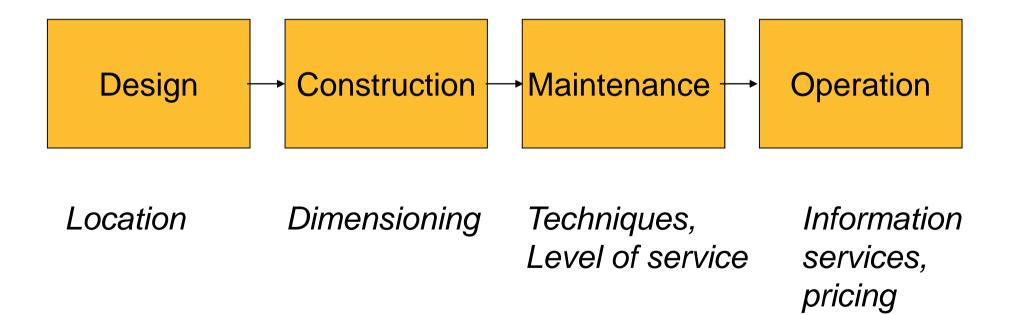
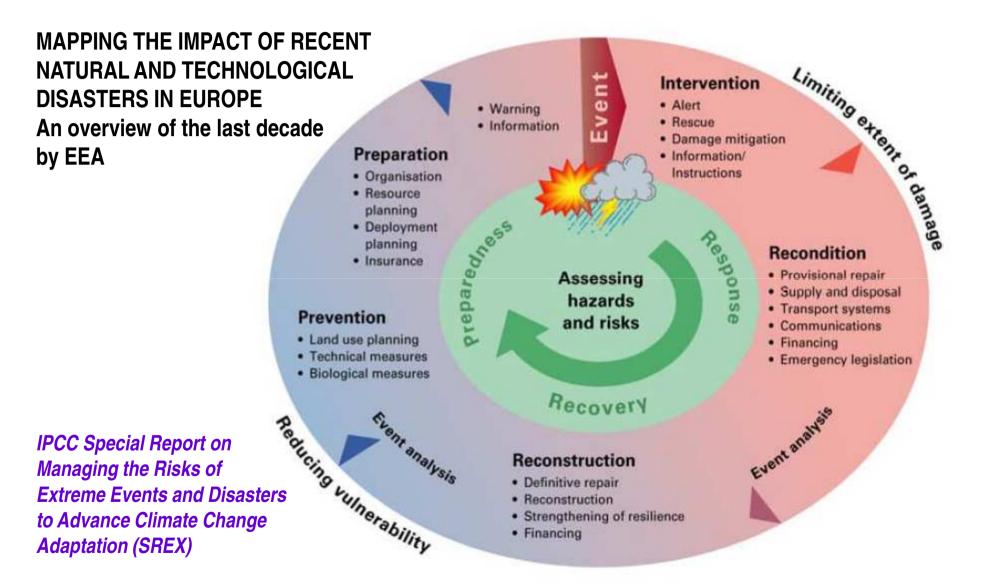



Fig. 3.2. Business model of Gothenburg traffic and weather information service (ROADIDEA pilot



Adaptation of road transport system to climate change – Primary methods

Source: Federal Office for Civil Protection FOCP¹⁹.

Dimensions and considerations

LOCAL	\rightarrow	INTERNATIONAL
DAILY	\rightarrow	SEVERAL DECADES
OPERATIONAL	\rightarrow	"ONCE IN A LIFETIME"
PUBLIC	\rightarrow	PRIVATE
INCREASE	\rightarrow	DECREASE

CHANGEING NEEDS AND PREFERENCES TECHNOLOGICAL DEVELOPMENT STAKEHOLDERS HAVE DIFFERENT AGENDAS