

Climate Change and The UK Solar Energy Resource

Dougal Burnett – PhD Student Dr Gareth Harrison – Senior Lecturer

Institute for Energy Systems The University of Edinburgh

PhD Title: Climate Change and Renewable Energy Portfolios

- A study of the potential impact of climate change on renewable energy resource and optimal electricity generation portfolio mixes in the UK.
- Uses 'mean variance portfolio theory' to explore optimal electricity generation portfolios for the present and future climate scenarios.

Presentation

- Objective:
 - To investigate UK solar resource of the present climate and the potential impact that climate change could have on the resource.
- Outline:
 - Solar Energy and Technologies
 - UK Present & Future Solar Resource
 - Results and Conclusions
 - Further Work

Solar Technologies

Solar Beam Concentrators

Solar Technologies

Space Based Solar

Solar Tower

Solar

Solar Island

Solar Technologies

Some novel (and not so novel) applications

present and future

Data for present climate (baseline) and future solar climate variability

- World Meteorological Organization (WMO) recommend a climate average to be over 30 year period (1961-1990).
- Sources of Solar Irradiation Data
 - Met Office Land Surface Observed Data Sets
 - UK Climate Impact Program
 - Observed Gridded Data Sets
 - UKCP09 Projections
 - Photovoltaic Geographical Information System (PVGIS).
 - Other sources GCM's, RCM's, reanalysis, satellite...

present and future

Measurement of Solar Irradiation

Weather stations use pyranometers and pyrheliometers

Campbell-Stokes Recorder - measures sunshine duration

present and future

Conversion of Sunshine Duration to Solar Irradiation

 Method used Suehrcke (2000), based on widely used Angstrom-Prescott equation.

$$\overline{K} = \left(\frac{\overline{H}}{\overline{H}_{o}}\right)$$

where

 \overline{H} = monthly average of daily horizontal surface radiation (beam+diffuse)

 \overline{H}_{o} = monthly average of daily horizontal surface extraterrestial radiation

Lots of lower level calculations required: sun-earth variables, latitude day RC
hours, solar declination, extra-terrestrial irradiation, sunset hour angle.

present and future

Validation of Suehrcke Method

- Identify weather stations that measure both 'sunshine hour duration' and 'solar irradiation' with sufficient historical data.
- Convert the measured 'sunshine hour duration' to 'solar irradiation' using the Suehrcke method.
- Compare the measured 'solar irradiation' with the Suehrcke derived 'solar irradiation.

OUTCOME

- 18 weather stations identified with at least five years of historical data for each data set.
- Comparison showed excellent agreement at all locations.

present and future

Sunshine Hours - Baseline Resource

- UKCP09: Gridded Observation Data Sets
- Based on surface observations from many weather stations
- Values generated using interpolation and regression
- Takes into account factors such as altitude, terrain, land use, latitude, longitude
- Conversion process from Sunshine Hours to Solar Irradiation

present and future

Sunshine Hours to Solar Irradiation

- Suehrcke conversion method
- Performed conversion on each grid cell for each month of each year from 1961 to 1990
- Averaged the results for each month and season

Solar Irradiation Monthly Mean Baseline Resource Map Created...

present and future

Validation of Solar Irradiation Monthly Mean Baseline Resource Map

 Compare with actual solar irradiation data measured over the same time period

present and future

UKERC

present and future

Future solar irradiation climate variability

- UKCP09 Climate Projections
- Provides Probabilistic Projections of Climate Change for a wide range of climatic variable
 - Uses perturbed physics ensembles (PPE) of HadCM3 model to generate climate projections
 - Projections also include the results of other IPCC climate models
 - Downscaled using ensemble of HadRM3 model
 - Quantifies known sources of uncertainties.
- Projections for seven 30 year time periods (2010-2099)
- Three future emission scenarios: (low, medium, high)
 - Comprise of three IPCC Emissions Scenarios: SRES A1FI, SRES A1B, SRES B1
- User Tools: user interface, weather generator, customisable maps and graphs.

UK**erc**

- Assessed the seasonal solar resource of the UK and investigated the impact climate change could have on the resource by the 2050s for a medium emission scenario.
- Summer months most parts of southern UK will get sunnier and benefit from increased solar energy resource in summer, while the relatively poor resources in the north will decrease slightly.
- Winter months all regions in will have increased cloud cover and slightly reduced solar energy resource.
- The UK will see an overall annual increase of 2.6% (-1.1% to 6.5%)
- Positive news for the viability of solar technologies, particularly in southern regions.
- Correlates well with increased use of air cooling systems due to the increased temperatures.
- However, the resource will be more seasonally variable and regional resource differences will be further reinforced.

Further Work

- Add south facing inclination to solar resource assessment calculations.
 - More calculations
 - Need ratio of direct and diffuse irradiation levels
- Projected costs and efficiency of a generic PV technology
- Geographical Economic Assessment
 - Cost and Risk Analysis
- Include results in PhD thesis

