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Abstract 
Probabilistic forecasts of temperature and precipitation change from the baseline period 1961-

1990 to the scenario period 2021-2050 are constructed. The forecasts are based on a new 

method that combines large-scale information from 19 global climate model (GCM) 

simulations with small-scale information from 13 regional climate models (RCM) 

simulations, and takes into account the effects of both model differences and natural climate 

variability. Only simulations based on the A1B emission scenario are included in the analysis; 

however,  previous  work  has  shown  that,  in  the  first  half  of  the  21st century, differences 

between emission scenarios are still small compared with other sources of uncertainty. 

 

The climate change forecasts derived with the new method are remarkably similar to those 

based on GCM data alone. The inclusion of RCM-based information adds credible small-scale 

detail to the projections, in particular near land-sea boundaries and in areas of high orography, 

but  this  systematic  effect  is  generally  small  compared  with  the  total  uncertainty  in  future  

climate change.   

 

The  report  consists  of  two  parts,  with  somewhat  different  aims.  In  the  first  part,  which  is  

mainly directed to the more technically oriented readers, the new method for combining GCM 

and RCM results is described and its impact on projections of climate change is studied. In the 

second part, which may be more useful for readers from outside the climate modelling 

community, the derived probabilistic forecasts of temperature and precipitation change are 

presented in map format and their interpretation is briefly discussed.   

 



 2

1. Introduction 

Despite the strong scientific consensus that increases in atmospheric greenhouse gases will 
lead to substantial changes in the global climate during this century (IPCC 2007), estimates of 
the magnitude (and for some aspects of climate, the direction) of the forthcoming changes are 
uncertain. This uncertainty comes from three basic sources: 
 

 Scenario uncertainty: future changes in the atmospheric composition, and thus the 
external forcing of the climate system, depend on the magnitude of future anthropogenic 
emissions of greenhouse gases and other radiatively active substances such as aerosol 
particles and their precursor gases. 

 Modelling uncertainty that results from our incomplete understanding, and incomplete 
capability to describe in climate models, the dynamics of the climate system that 
determine its response to changes in external forcing. 

 Natural climate variability, resulting in part from variations in solar and volcanic 
activity but at least as importantly from the internal dynamics of the climate system, will 
continue alongside the gradual anthropogenic climate changes. 

Figure 1.1. A schematic view of sources of uncertainty in climate change as a function of time 
(see text for further discussion).  
 
The relative importance of these uncertainties depends on the time period considered (Figure 
1.1). Scenario uncertainty is very important in the long run. For example, the 
Intergovernmental  Panel  on  Climate  Change  best  estimates  for  the  global  mean temperature  
change by the end of the 21st century vary from 1.8 C to 4.0 C between the SRES scenarios 
with the smallest (B1) and the largest (A1FI) greenhouse gas emissions (IPCC 2007). For 
shorter time horizons, however, the scenario uncertainty is much smaller. On one hand, there 
is inertia in the socio-economical system, and the various scenarios of greenhouse gas 
emissions therefore still stay relatively close to one another for the next few decades. On the 
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other hand, the atmospheric concentrations of carbon dioxide and other long-lived greenhouse 
gases react relatively slowly to the changes in emissions. 
 
Modelling uncertainty is in the short run more important than scenario uncertainty, and it also 
increases with time. The larger the greenhouse gas forcing becomes, the larger absolute effect 
model errors will have in simulating the response to this forcing. Analogously, the modelling 
uncertainty is (in the long run) largest for scenarios with large greenhouse gas emissions. 
Thus, the IPCC (2007) uncertainty range for the 21st century global mean temperature 
increase for the lowest (B1) emission scenario (1.1-2.9 C) is in absolute terms much narrower 
than the uncertainty range for the highest (A1FI) scenario (2.4-6.4 C). 
 
Natural variability is generally expected to be the dominating source of uncertainty in short-
term climate projections. In high latitudes, in particular, climate is characterized by large 
interannual and interdecadal variability, which is difficult to predict in any detail even for the 
near-term future 1 . The uncertainty associated with natural variability does not actually 
decrease with time: even if there were no other uncertainties, it would still be at least as 
difficult, and probably more difficult, to forecast the temperatures for the end of this century 
than for the next decade. However, in comparison with the other, increasing uncertainties, 
natural variability becomes relatively less important with time. 
 
The depiction of uncertainties in Figure 1.1 is schematic, not quantitative. In addition to the 
forecast time horizon, the relative importance of the three sources of uncertainty depends on 
the variable, season and geographical area considered. In particular, natural variability is 
expected to be relatively more important for local and regional than for global mean climate 
changes (because, in the global mean, contrasting regional effects of natural variability largely 
average out). On the other hand, natural variability is expected to be relatively less important 
for changes in temperature than for changes in many other variables including precipitation, 
because the greenhouse-gas-induced climate change signal is stronger for temperature than for 
other variables.  
 
This report presents probabilistic forecasts (or “projections”; these words are used 
interchangeably here) of temperature and precipitation change for northern Europe in the first 

                                                
1  Some fraction of natural climate variability might be predictable via a proper initialization of the ocean 

circulation in climate models (e.g., Keenlyside et al. 2008), or if natural external forcing such as variations in the 

solar constant could be predicted in advance. However, the research on this subject is still in its infancy, and 

current understanding suggests that even the potentially predictable fraction of variability in Nordic land areas is 

modest (e.g., Boer 2000).   
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half of the 21st century. As such, the report is essentially an update to the report prepared for 
CES Climate Modelling and Scenarios deliverable D2.2 (Räisänen and Ruosteenoja 2008; 
hereafter RR08). However, while this previous study was based on results from global climate 
models (GCMs) alone, we here combine the GCM results with information from higher-
resolution regional climate models (RCMs). The present analysis builds on simulations made 
for the Special Report on Emissions Scenarios (SRES) A1B scenario (Naki enovi  and Swart 
2000); thus, the emission scenario uncertainty is neglected. However, as suggested by Fig. 1.1 
and shown more quantitatively in RR08, this source of uncertainty is secondary when 
considering climate change in the early 21st century. 
 
Another difference to RR08 is the length of the forecast period. Following the 
recommendation from the CES all-staff meeting in May 2009, we focus on climate change 
between the two 30-year periods 1991-2020 and 2021-2050. This will make the uncertainty 
due to natural variability smaller than it is in forecasts of decadal mean climate change, which 
were the focus in RR08. This is because natural variations in climate (e.g., cold versus warm 
or dry versus wet years) tend to average out more completely during a 30-year period than a 
single decade. 
 
The outline for the rest of this report is as follows. The  GCM and RCM simulations used in 
the analysis are listed in Section 2. Section 3 describes how probabilistic climate change 
projections are derived by combining the results from the GCM and RCM simulations. In 
Section 4, the impact of the RCM data on the projections is studied by comparing the GCM 
plus RCM based projections with those obtained by using GCM data alone. Section 5 presents 
the  GCM  plus  RCM  based  projections  in  more  detail,  in  the  form  of  several  maps.  This  is  
expected to be the most valuable section for the readers who are more interested in the use of 
climate scenarios than in the methods used for deriving these scenarios. Finally, the main 
conclusions are presented in Section 6. 

2. Model simulations 

We use in our analysis two sets of climate model simulations: GCM simulations from the 
Third Coupled Model Intercomparison Project, CMIP3 (Meehl et al. 2007), and RCM 
simulations from the European Union FP6  ENSEMBLES project (Hewitt and Griggs 2004)2 . 
 
As in RR08, 19 CMIP3 GCMs are used (Table 2.1). The horizontal grid spacing of these 
models varies from 1.1  latitude × 1.1  longitude to 4  latitude × 5  longitude. For each 

                                                
2 Some of the RCM simulations in the ENSEMBLES data base were conducted with funding from other sources, 

including CES. 
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model, a 198-year time series (1901-2098) obtained by concatenating the “20th Century 
Climate in Coupled Climate Models” simulation with the SRES A1B simulation for the 21st 
century is used. Data from outside the periods 1961-1990 and 2021-2050 are needed by the 
resampling technique described briefly in Section 3.1 of this report and in more depth by 
Räisänen and Ruokolainen (2006).  
 
Table 2.1 The CMIP3 GCMs used in this report.  
 

Model Institution  
BCCR-BCM2.0 Bjerknes Centre for Climate Research, Norway 

CGCM3.1 (T47) Canadian Centre for Climate Modelling and Analysis 

CGCM3.1 (T63) same as previous 

CNRM-CM3 Météo-France 

CSIRO-MK3.0 CSIRO Atmospheric Research, Australia 

ECHAM5/MPI-OM Max Planck Institute (MPI) for Meteorology, Germany 

ECHO-G University of Bonn and Model & Data Group, Germany; Korean 

Meteorological Agency 

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory, USA 

GFDL-CM2.1 same as previous 

GISS-ER Goddard Institute for Space Studies, USA 

INM-CM3.0 Institute for Numerical Mathematics, Russia 

IPSL-CM4 Institut Pierre Simon Laplace, France 

MIROC3.2 (hires) Center  for  Climate  System  Research,  National  Institute  for  

Enviromental Studies and Frontier Research Center for Global 

Change, Japan 

MIROC3.2 (medres) same as previous 

MRI-CGCM2.3.2 Meteorological Research Institute, Japan 

NCAR-CCSM3 National Center for Atmospheric Research, USA 

NCAR-PCM same as previous 

UKMO-HadCM3 Hadley Centre for Climate Prediction and Research / Met Office, 

UK 

UKMO-HadGEM same as previous 

 
The 13 RCM simulations used in our analysis are listed in Table 2.2. This set of RCM 
simulations includes all that were available in the ENSEMBLES Research Theme 3 data base 
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in mid-June 2009 and (i) had been run at 25 km resolution for the A1B scenario (ii) in a 
domain considered sufficiently large for our analysis, and (iii) for which no technical 
problems were detected in an initial inspection of the model output. The data for most of the 
RCMs were available as interpolated to a regular 0.25° × 0.25° latitude-longitude grid. 
However, for the present analysis we aggregated the data to a somewhat coarser 0.5° × 0.5° 
grid. This was done for reducing the computing burden; the loss of information associated 
with this aggregation is most likely minimal. 
 
Table 2.2 The RCM simulations used in this report. Institution refers to the institution that conducted 
the RCM simulation. The model and institution acronyms follow the ENSEMBLES Research Theme 3 
web page (http://ensemblesrt3.dmi.dk/)3. 
 

Driving GCM RCM  Institution Full years 
HadCM3Q0 HadRM3Q0  Hadley Centre 1951-2098 
 CLM  ETHZ 1951-2098 
HadCM3Q3 HadRM3Q3   Hadley Centre 1951-2098 
HadCM3Q16 RCA3 C4I 1951-2098 
 HadRM3Q16 Hadley Centre 1951-2098 
ECHAM5-r3 REMO MPI 1951-2100 
 RACMO2 KNMI 1950-2100 
 RegCM ICTP 1951-2100 
 RCA SMHI 1951-2100 
ARPEGE Aladin CNRM 1950-2050 
 HIRHAM5 DMI 1951-2100 
BCM HIRHAM METNO 1951-2050 
 RCA SMHI 1961-2099 
 
As indicated by Table 2.2, the RCM simulations are not independent from each other. The 13 
simulations are based on horizontal boundary conditions from just six GCMs; for each driving 
GCM there are regional simulations by one to four RCMs. This is problematic for 
probabilistic analysis because the RCM solution is strongly affected by the driving GCM 
simulation.  Furthermore,  one  of  the  RCMs  (RCA-SMHI)  has  been  used  in  two  simulations  

                                                
3 HadCM3Q0, HadCM3Q3 and HadCM3Q16 are three versions of the HadCM3 model, differing by the numeric 

values of some model parameters that impact the simulated climate response to anthropogenic radiative forcing 

substantially. HadRM3Q0, HadRM3Q3 and HadRM3Q16 are the corresponding versions of the regional 

HadRM3 model. 
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with different driving GCMs, and some of the nominally different RCMs are close relatives to 
each other.  As also shown by the table, the length of the RCM simulations varies. For 11 of 
the 13 RCM simulations, data are available from 1951 (or 1961) to the end of the 21st century, 
but two of the simulations only extend to the year 2050. 
 
For the sake of simplicity, we assume that all the GCM and all the RCM simulations deserve 
the same weight in our calculations. This assumption is obviously debatable: for example, one 
might argue that somewhat lower weight should be given to the four RCM simulations driven 
by the ECHAM5-r3 GCM simulation, because these RCM simulations are expected to be 
strongly correlated with each other. 
  
3. Methods used for deriving probabilistic climate change forecasts 

The data  sets  available  for  the  CMIP3 GCMs and  the  ENSEMBLES RCMs both  have  their  
strengths and weaknesses. The global CMIP3 models can be considered as fairly independent 
from each other, except for some that are relatively close relatives. However, the coarse 
horizontal resolution of these models compromises their ability to simulate regional variations 
in climate change, particularly in areas with complex geography. The RCMs have an order of 
magnitude higher resolution, which allows them to resolve much (although not nearly all) of 
the regional climatic variability associated with the land-sea distribution and topography. 
However, the available number of effectively independent RCM simulations is much smaller 
than the number of GCM simulations. 
 
Consequently, we follow in this study the following principle for deriving probabilistic 
forecasts of regional climate change: 
 
1. The probability distribution of “large-scale” climate change is estimated from GCM   

simulations. 
2. RCM simulations are used to derive a probabilistic relationship between local and large-

scale climate changes. 
3. The GCM-based large-scale probability distribution and the RCM-based relationship 

between local and large-scale climate changes are combined, to obtain probabilistic 
forecasts of climate change on the local (here: 0.5° lat × 0.5° lon) scale.   

 
The threshold between large and small scale, as required by this method, is not unambiguous. 
The “large” scale should be so large that the difference between GCM and RCM resolution 
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has no systematic effect on simulated climate change on this scale4. On the other hand, the 
“small” scale should be kept small enough, to prevent the final probability distributions from 
being dominated too strongly by the RCM data for which the sampling is worse than for the 
GCM simulations. 
 
In this report, we define “large-scale” climate change as the change in area mean temperature 
or precipitation over an area of 1500 × 1500 km (see Figure 3.1 – note that the domain is 
rectangular although it is distorted by the map projection). This large-scale component is 
defined for each target grid box separately, so that the target location is always in the middle 
of  the  large-scale  domain.  For  target  locations  less  than  750  km from the  boundaries  of  the  
area for which RCM data are available (the grey shading in Figure 3.1), the large-scale 
domain is reduced in size. For example, for a grid box situated 400 km south of the northern 
boundary, the large-scale domain is reduced to 800 km in north-south direction, but its width 
in the east-west direction is kept as 1500 km provided that the eastern and western boundaries 
are at least 750 km away. Near the corners of the area covered by the RCM data, the large-
scale domain is compressed in both the east-west and the north-south directions. As a result, 
the RCM data have less impact on the final probabilistic forecasts near the borders of the area 
than in its inner parts. 

Figure 3.1. The red shading shows the area used for definition of large-scale climate change, for a 
target location in western Norway (the cross). The gray shading shows the analysis domain used in 
this report, defined as the area available for all 13 RCM simulations.  
 
As  an  example,  Figure  3.2  shows  the  winter  (December-January-February  =  DJF)  mean  
temperature change from 1961-1990 to 2021-2050 in one of the RCM simulations as divided 
                                                
4 In principle, it is possible that this condition is not fulfilled at any scale, because model resolution might have a 

systematic effect on the simulated climate change that is not averaged out when widening the area (Fronzek and 

Carter 2007). However, this possibility has not been studied by a systematic comparison between climate 

changes in RCMs and the driving GCM simulations. In this study as well, such comparison was prevented by the 

unavailability of most of the GCM simulations used for driving the ENSEMBLES RCMs.  
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to its large-scale and small-scale (i.e. total – large-scale) parts. As typically turns out to be the 
case for temperature change, the small-scale component has relatively small amplitude. 

Figure 3.2. Winter mean temperature change (°C) in the HadRM3Q0/HadCM3Q0 simulation. (a) 
total change from 1961-1990 to 2021-2050, (b) large-scale change, and (c) small-scale change. 

3.1 Resampling and variance correction 

As in RR08, we use here the resampling technique developed by Räisänen and Ruokolainen 
(2006) for improving the sampling of natural variability. The resampling assumes that the 
probability distribution of local climate changes is determined by the CMIP3 19-model mean 
global mean warming; as shown by Räisänen and Ruokolainen (2006), the small systematic 
biases eventually caused by this approximation are more than compensated by the increase in 
sample size. Under this assumption, simulated climate changes between any two 30-year 
periods that share practically the same multi-model global mean temperature change as 
simulated between 1961-1990 and 2021-2050 (1.35°C) can be taken as plausible realizations 
of the climate change that could occur between 1961-1990 and 2021-2050. Sub-sampling the 
latter 30-year period with 5-year interval, 12 such pairs of periods (from 1910-1939 / 2011-
2040 to 2021-2050 / 2066-2095) are found for the CMIP3 ensemble, giving a nominal sample 
size of 19 × 12  = 228.  
 
With the same 5-year sub-sampling interval, 11 suitable pairs of periods are found for those 
ENSEMBLES simulations that extend from 1951 to the end of the 21st century. For the 
simulations terminating in 2050, however, the 5-year sub-sampling would only give one valid 
pair of periods, and even with 1-year sub-sampling only 3 pairs are obtained. Thus, the 
resampling does not work properly for these models. For simplicity, however, we assume that 
these simulations deserve the same weight in the calculations as the others. Hence, the few 
realizations obtained from them are overweighted.  
 
A detail related to resampling is the variance correction described by Ruokolainen and 
Räisänen  (2007).  This  correction  is  based  on  the  assumption  that  an  overestimate  
(underestimate) of interannual climate variability also implies an overestimate (underestimate) 
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of variability on longer time scales. Where the simulated interannual variability in a given 
model exceeds (is smaller than) the observed variability, there the variance of the resampled 
realizations is artificially reduced (amplified) to compensate for this bias. Here we only apply 
the variance correction to the large-scale climate changes inferred from the CMIP3 ensemble, 
not to the data from the ENSEMBLES RCM simulations (the latter would be complicated 
because of the way in which these data are used).  
 
The internannual variances required by the variance correction were calculated from 
detrended 20th century (1901-2000) time series of simulated temperature and precipitation, 
and from observations from the University of East Anglia Climate Research Unit (CRU) TS 
2.0 data set (Mitchell et al. 2004). Because the CRU data only cover land areas, the large-
scale area means of temperature and precipitation were simply calculated as area means over 
those grid boxes within the 1500 × 1500 km domain for which data were available (and 
excluding such isolated island grid boxes where the variability in the CRU data set is 
unrealistically low). The same masking was applied when calculating the internannual 
variance of large-scale climate in the CMIP3 simulations. The ratio between the simulated 
and observed variances obtained in this way was also assumed to be valid for full 1500 × 
1500 km area means. Obviously, the reliability of this procedure is questionable over the 
Atlantic Ocean, where the large-scale area means cannot be well approximated by the 
available land- and island-based observations.  
 
As shown by Ruokolainen and Räisänen (2007), the variance correction has a slight tendency 
to increase the spread of precipitation change projections in northern Europe, because the 
simulated interannual precipitation variability in the CMIP3 models is typically somewhat 
lower than observed. Its effect on temperature change projections is rather modest. 

3.2 Relationship between local and large-scale climate changes in ENSEMBLES 
simulations 

Figure 3.3 shows the relationship between large-scale and local winter mean temperature and 
precipitation changes, as diagnosed from the resampled ENSEMBLES ensemble, in a grid 
box in western Norway. As expected, the local changes tend to increase with the large-scale 
changes. However, as generally turns out to be the case, this relationship is much tighter for 
temperature (the large-scale change explains 86% of the variance of the local change) than for 
precipitation (only 40% of the variance of the local change is explained5).  

                                                
5 These numbers give the explained variance as calculated directly from the data set. They give an upward biased 

estimate of the fraction of explained variance in the population from which the data come from. 
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Figure 3.3. Analysis of winter mean climate changes in the resampled ENSEMBLES RCM 
simulations, in a grid box in western Norway (61.25°N, 6.25°E). In (a), the horizontal axis shows the 
area mean temperature change for a 1500 × 1500 km square centred at this location (shown in Fig. 
3.1), the vertical axis the local temperature change. The dashed line is the linear regression line of Eq. 
(3.1). (b) As (a), but for precipitation changes.  
 
In the location of Fig. 3.3, the best-fit linear regression lines that link the local temperature 
and precipitation changes to the large-scale change have slopes exceeding one (1.3 for 
temperature, and 2.0 for precipitation). For temperature change, a slope coefficient exceeding 
unity is unsurprising because, in this case, the large-scale area includes a substantial  fraction 
of ocean (see Fig. 3.1) and land is generally expected to warm faster than sea. The very high 
coefficient  for  precipitation  turns  out  to  be  unusual,  but  it  can  also  be  explained  by  the  
geographic location of the grid box chosen for this example. We speculate that the physical 
explanation is as follows: 
 
 On both the local and larger scales, changes in winter precipitation result mainly from a 

combination of two factors: (i) an increase in northward and ocean-to-land water vapour 
transport resulting from the larger moisture content of a warmer atmosphere, and (ii) 
changes in atmospheric circulation. The former factor is expected to be quite robust, but 
the latter is more variable among model simulations and also sensitive to natural 
variability. 

 An increase in westerlies would induce a substantial increase in local orographic 
precipitation on the western slopes of the Scandinavian mountains. It would also 
enhance the increase in large-scale precipitation (partly because of increased eastward 
moisture advection from the Atlatnic Ocean, partly because an increase in westerlies 
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implies a northward shift in cyclone activity), but this large-scale effect should not be as 
strong. 

 Thus, the strong increase in local precipitation with increasing large-scale precipitation 
in Fig. 3.3b likely reflects the fact that the precipitation in this particular location is 
more sensitive to atmospheric circulation than the large-scale precipitation in the 
surrounding area. 

 The regression line in Fig. 3.3b also indicates that, for a zero large-scale precipitation 
change, the local precipitation in western Norway would decrease. This is physically 
plausible. For the large-scale precipitation not to increase, the increased water vapour 
transport resulting directly from the warming of the atmosphere should be compensated 
by a southward shift in cyclone activity and weakened time-mean westerlies. Given that 
the local precipitation in western Norway is relatively more sensitive to the atmospheric 
circulation than the large-scale precipitation is, the local precipitation would decrease in 
such a situation. 

 
To link the local temperature and precipitation changes ( xLoc) to the corresponding large-
scale climate changes ( xLarge), we apply ordinary linear regression to the resampled 
ENSEMBLES data: 

 ebxax LARGELOC  (3.1) 

Here, a is the slope coefficient and b a constant offset, whereas e represents a stochastic 
residual not explained by the large-scale climate change. We assume e to be normally 
distributed with zero mean and variance  

 
N

i
LARGELOC bxax

N 1

22 )(1
 (3.2) 

By neglecting the sampling uncertainty in a and b, (3.2) gives a downward biased estimate of 
the residual variance. However, this bias is not easily corrected for the resampled 
ENSEMBLES  data  set  in  which  the  different  realizations  of  climate  change  are  not  
independent. 
 
The first four rows of Figs. 3.4 and 3.5 show the diagnosed geographical distributions of a, b, 
and  for  temperature  and  precipitation  change  in  the  four  three  month-seasons  (DJF  =  
December-January-February, MAM = March-April-May, JJA = June-July-August, SON = 
September-October-November) and for the annual mean. In the last row of the figures, the 
fraction  of  variance  explained  by  the  regression  is  shown.  This,  together  with  , shows how 
tightly local climate changes are controlled by the large-scale climate change within the 
ENSEMBLES data set. 
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 Figure 3.4.  Relationship between local and large-scale temperature changes in the resampled 
ENSEMBLES RCM simulations. The first row shows the slope coefficient in (3.1), the second the 
constant offset, the third the square root of the residual variance and the fourth the fraction of 
variance explained by the linear regression.   
 
As expected, the slope coefficients vary on both sides of unity6. For changes in temperature 
(Figure 3.4), the variation is relatively small, but the tendency to larger warming (and larger 
circulation-sensitivity  of  the  warming)  over  land  than  sea  is  reflected  as  coefficients  
exceeding one over most land areas. The effects of orography can also be seen, most clearly 
over the Alps in spring. A maximum in slope also occurs over the Bothnian Bay in summer; 
however, in this area the regression residuals are also large. In the case of precipitation 
(Figure 3.5), the slope coefficients are much more variable. A distinct maximum with a  2 
occurs along the western coast of Norway in winter and to a lesser extent in autumn. The 
constant offsets b show some tendency to anticorrelation with a, particularly for temperature 

                                                
6 A slight systematic tendency for the coefficients to exceed one can be seen, particularly for precipitation. This 

can be explained by the fact that the large-scale domain is always centred at the target grid box. To understand 

this, assume that the large-scale domain were fixed in location. In this case, the mean of the slope coefficients 

over its area would be exactly one (at least for temperature, for which the change is given in absolute units). 

However, coefficients exceeding unity would be more common in the middle of the domain, where the local 

climate change is typically best correlated with the large-scale change. 



 14

but to some extent also for precipitation. This might partly be an artefact of sampling 
variability; however, as discussed above for the grid box in western Norway, physical 
explanations are also plausible.   

Figure 3.5.  As Figure 3.4, but for precipitation changes.  
 
Changes in local temperature are strongly controlled by the large-scale temperature change. 
This is reflected both by the small amplitude of the regression residuals (typically 0.1-0.3°C) 
and the large explained variance (mostly above 80%, with some exceptions like the Baltic 
Sea). For changes in precipitation, the correlation between the local and the large-scale 
changes and hence the explained variance is lower. The explained variance varies on both 
sides of 60% for seasonal precipitation changes, and is only slightly higher for annual mean 
precipitation change. Also note that the explained variance typically increases, and the 
residuals decrease, towards the boundaries of the domain. This is caused by the decrease in 
the area used for defining “large-scale” climate changes near the borders of the RCM domain. 
 
To derive our probabilistic forecasts of temperature and precipitation change, we use the 
regression coefficients (a, b and ) diagnosed from the ENSEMBLES data set to convert the 
228 realizations of large-scale climate change from the resampled CMIP3 ensemble to 
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plausible realizations of local climate change. The stochastic residuals e are added as 
normally distributed random numbers (10 per each CMIP3 realization of large-scale climate 
change).  
 
This procedure is illustrated in Fig. 3.6. The first panel shows winter mean temperature and 
precipitation changes for the 1500 km × 1500 km area surrounding the grid box used in Fig. 
3.3,  as  obtained  from  the  resampled  CMIP3  ensemble.  In  the  second  panel,  the  CMIP3  
simulated large-scale changes are transformed using (3.1), but excluding the stochastic 
residuals e. Because, the slope coefficients of both temperature and precipitation change 
exceed one in this grid box, the distributions of both temperature and precipitation change 
grow wider (but the widening is larger for precipitation change). The distributions are 
additionally widened when the stochastic residuals are added as random numbers (the last 
panel). The tendency of the realizations of temperature and precipitation change to fall on 
straight lines in Fig. 3.6c is artificial – this is due to the fact that the same sequence of random 
numbers is used for both variables. As implemented here, the method does not take into 
account the correlation of temperature and precipitation change residuals, although this could 
be done in principle, if joint distributions of temperature and precipitation change were 
needed. 

Figure 3.6. Realizations of winter mean temperature (horizontal axis) and precipitation change 
(vertical axis). (a) Area mean changes over the 1500 km × 1500 km area surrounding the grid box 
(61.25°N, 6.25°E) in the resampled CMIP3 ensemble. (b) Transformation of the large-scale 
temperature and precipitation changes to local changes using (3.1) but excluding the stochastic 
residuals. (c) as (b) but including the stochastic residuals. The tendency of temperature and 
precipitation changes to fall on straight lines in (c) is artificial (see text). 

3.3 Comparison of large-scale climate changes between the CMIP3 and ENSEMBLES 
simulations 

If the statistical distribution of large-scale climate changes agrees between the RCM and the 
GCM ensembles,  then  our  method will  return  a  distribution  similar  to  that  obtained  directly  
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from the RCM simulations. On the other hand, if the differences in large-scale climate change 
between the two data sets were very large, this might deteriorate the reliability of our method 
as the regression relationship (3.1) would need to be extrapolated far beyond the range that it 
was derived for. 
 
In  fact  the  differences  between  the  CMIP3  and  ENSEMBLES  data  sets  are  quite  small,  at  
least as far as the mean of large-scale climate changes is considered. The annual mean 
temperature changes differ mostly less than 0.1°C (Figs. 3.7a-c) and the changes in annual 
precipitation typically by about one percent (Figs. 3.8a-c). Slightly larger, but still modest 
differences occur in seasonal mean climate changes (Figs. 3.9-3.10, top). For example, the 
average winter mean warming in eastern Finland and northern Russia is about 0.5°C smaller 
in the ENSEMBLES than in the CMIP3 data set. 

Figure 3.7. Comparison of large-scale annual mean temperature changes (°C) within the resampled 
CMIP3 and ENSEMBLES data sets. Top: mean changes and their difference. Bottom: standard 
deviations and their ratio. 
 
There are more marked differences between the spread of the two ensembles. Large-scale 
temperature changes in northern Europe vary less within the ENSEMBLES than within the 
CMIP3 data set. This is the case for both the annual mean temperature change (Fig. 3.7, 
bottom) and for the changes in the individual seasons (Fig. 3.9, bottom). The conclusions for 
precipitation are less clear-cut. The standard deviation of large-scale annual mean 
precipitation change over Scandinavia is slightly larger in the ENSEMBLES than in the 
CMIP3 ensemble (Fig. 3.8, bottom). In winter, however, large-scale precipitation changes 
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over the Nordic area are less variable (by 10-50% in standard deviation) in the ENSEMBLES 
than in the CMIP3 data set (Fig. 3.10, bottom). 

Figure 3.8. Comparison of large-scale annual mean precipitation changes (%) within the resampled 
CMIP3 and ENSEMBLES data sets. Top: mean changes and their difference. Bottom: standard 
deviations and their ratio. 

Figure 3.9. Comparison of large-scale seasonal mean temperature changes between the resampled 
CMIP3 and ENSEMBLES data sets. Top: ensemble mean difference ENSEMBLES – CMIP3 (°C). 
Bottom: ratio between the standard deviations in the ENSEMBLES and the CMIP3 data sets. 
 



 18

Figure 3.10. Comparison of large-scale seasonal mean precipitation changes between the resampled 
CMIP3 and ENSEMBLES data sets. Top: ensemble mean difference ENSEMBLES – CMIP3 (%). 
Bottom: ratio between the standard deviations in the ENSEMBLES and the CMIP3 data sets. 
 

4. Impact of RCM data on forecasts of climate change  

In RR08, probabilistic forecasts of climate change were derived using the CMIP3 ensemble of 
GCM simulations. In this section, the impact of adding RCM information is studied. Here, we 
simply characterize the forecasts by their mean and standard deviation; other characteristics of 
the probability distributions will be studied in the next section. 
 
The discussion in Section 3 suggests at least three ways of deriving forecasts of climate 
change:  (i)  from  GCM  simulations  alone,  (ii)  from  RCM  simulations  alone,  and  (iii)  by  
combining the GCM- and the RCM-based information. Figures 4.1-4.4 compare these 
alternatives with each other, with a fourth column included for the difference of (iii) and (i) to 
illustrate the impact of the RCM data in the last method. 
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Figure 4.1. Ensemble mean seasonal and annual mean temperature changes (°C) for the resampled 
CMIP3 GCM simulations and ENSEMBLES RCM simulations (first and second columns), and for the 
combination of the two data sets (third column). The last column shows the difference between the 
third and the first columns. The changes represent the mean temperature difference between 2021-
2050 and 1961-1990. 
 
An inspection of the ensemble mean temperature changes (Fig. 4.1) reveals a remarkable 
similarity between the three methods. However, the ENSEMBLES simulations show sharper 
gradients along the coastlines than the lower-resolution CMIP3 simulations. The combination 
of the CMIP3 and ENSEMBLES data (third column) retains the small-scale patterns from the 
ENSEMBLES simulations. However, where larger-scale differences between CMIP3 and 
ENSEMBLES exist, such as in the northeastern corner of the domain in winter, the absolute 
magnitude of the warming in the combined CMIP3 plus ENSEMBLES projection is closer to 
that in the CMIP3 ensemble. Consequently, the impact of the RCM data on the mean of the 
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temperature change projections is modest in absolute terms, almost invariably less than 0.3°C 
(fourth column). The most notable features in the Nordic area include a slight increase in 
warming in western Norway, and a slight decrease in warming in northeastern Fennoscandia. 
 

Figure 4.2. As Figure 4.1, but for the standard deviation of temperature change (unit: °C). The last 
column shows the ratio between the standard deviations in the third and the first columns. 
 
A comparison between the first two columns in Fig. 4.2 shows that the standard deviation of 
temperature changes in northeastern Europe is mostly smaller in the ENSEMBLES than in the 
CMIP3 ensemble; in southwestern Europe, the difference is reversed. Nevertheless, the 
combination  of  the  CMIP3 and  ENSEMBLES ensembles  yields  standard  deviations  that  are  
mostly within 10% from those obtained directly from CMIP3. One exception is western 
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Norway, where the standard deviation of winter mean temperature change is amplified locally 
by  about  30%.  The  comparison  also  reveals  some  “hot  spots”  over  regional-scale  water  
bodies,  such  as  the  Bothnian  Bay  and  the  White  Sea,  where  temperature  changes  are  more  
variable  in  the  ENSEMBLES  data  set  and  in  the  combined  CMIP3  plus  ENSEMBLES  
ensemble than among the CMIP3 simulations. These hot spots are most pronounced in 
summer. 

Figure 4.3. Ensemble mean seasonal and annual mean precipitation changes for the resampled 
CMIP3 GCM and ENSEMBLES RCM simulations (first and second columns), and for the combination 
of the two data sets (third column). The last column shows the difference between the third and the 
first columns. The changes represent the per cent difference in mean precipitation between 2021-2050 
and 1961-1990. 
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Ensemble means of precipitation change are also similar between CMIP3, ENSEMBLES and 
their combination (Figure 4.3). Most notably, the differences in annual mean precipitation 
change between the combined data set and the CMIP3 ensemble (bottom right panel) are 
typically of the order of only one percent. Somewhat larger differences are apparent on the 
seasonal time scale. For example, the ensemble mean of the ENSEMBLES simulations and 
the combined ensemble both suggest a relatively sharp gradient in winter precipitation change 
across Scandinavia, with a larger per cent increase on the eastern than the western side of the 
Scandinavian mountains. A similar feature is seen in the CMIP3 results, but the gradient is 
much smoother. However, as can be seen from Figure 4.4, changes in winter precipitation in 
western Norway have a rather large uncertainty. 
 
The standard deviation of precipitation change (Figure 4.4) shows few systematic differences 
between the three ensembles, but there are some differences in the seasonal and regional 
details. A striking feature in the combined CMIP3 plus ENSEMBLES ensemble is the local 
maximum in the standard deviation of winter precipitation at the west coast of Norway, which 
is  not  resolved  by  the  lower-resolution  CMIP3  ensemble.  This  reflects  in  part  the  large  
variability of winter precipitation changes in this area in the ENSEMBLES simulations, which 
most likely results from the strong circulation sensitivity of precipitation caused by the local 
geography. However, the standard deviation in the combined data set actually exceeds that 
obtained directly from the ENSEMBLES data. This is because the large-scale winter mean 
precipitation in this area is more variable within the CMIP3 than the ENSEMBLES data set 
(Figure 3.10).  
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Figure 4.4. As Figure 4.3, but for the standard deviation of precipitation change (in per cent of the 
mean precipitation in 1961-1990). The last column shows the ratio between the standard deviations in 
the third and the first columns. 
 
In summary, the higher resolution of the RCM simulations has a relatively modest effect  on 
the resulting climate change projections. The conclusions from the earlier GCM based 
analysis  by  RR08  remain  therefore  largely  valid.  Nevertheless,  the  RCM  data  do  add  some  
physically plausible small-scale detail in the projections. Land-sea contrasts in temperature 
change near coastlines are more sharply resolved, as is the impact of orography on 
precipitation changes. However, the RCMs do not eliminate the uncertainty in the forecasts. 
The uncertainty estimates obtained by combining the information from the CMIP3 and 
ENSEMBLES  simulations  are  generally  similar  to  those  obtained  directly  from  the  CMIP3  
data set. In some specific cases, such as for the change in winter precipitation in western 
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Norway, the higher-resolution data in fact reveal a larger uncertainty than was visible from 
the coarser-resolution CMIP3 results. 

5.  Probabilistic projections of temperature and precipitation change 

In this section, probabilistic projections of temperature and precipitation change are presented. 
As noted earlier in this report, there are three main differences between these projections and 
the ones given in RR08: 
 
1. Following the recommendation from the CES annual meeting in May 2009, the baseline 

period has been shifted from 1971-2000 to 1961-1990. This backward shift in baseline 
acts to make the simulated climate change between the baseline and any future period 
slightly larger. 

2. A 30-year forecast period (2021-2050) is considered instead of individual decades. 
Because 30-year means in temperature and precipitation are affected less by natural 
variability than decadal means, this change acts to narrow the uncertainty range in the 
projections. 

3. Results  from  the  global  climate  models  (GCMs)  used  in  RR08  are  combined  with  
higher-resolution (25 km) regional climate model (RCM) simulations from the 
ENSEMBLES project, using the methods described in Section 3. As discussed in 
Section 4, this change has a relatively small impact on the projections, although it adds 
physically credible small-scale detail particularly near coastlines and mountain ranges. 

5.1 Best estimates and uncertainty ranges of temperature and precipitation change 

Figure 5.1 depicts the 5th, 50th and 95th percentiles of the calculated probability distribution of 
temperature change. As far as the method of estimating the probabilities is valid, there is by 
definition  a  90% probability  that  the  changes  in  the  real  world  will  fall  between  the  5th and 
95th percentiles. The 50th percentile (i.e., the median) represents the best estimate of the 
change. 
 
As  the  best  estimate,  an  annual  mean  warming  of  about  1.5°C  is  projected  for  Iceland,  
Denmark and the west coast of Norway. Elsewhere in the Nordic area, the warming is slightly 
larger, approaching 2.5°C in northernmost Finland and northern Russia. The largest warming 
is  projected  in  winter  and  the  smallest  in  summer.  This  seasonal  contrast  is  strongest  in  the  
northeastern parts of the Nordic area. Further south, in the Mediterranean area, the seasonal 
cycle of the warming is reversed. Except for the absolute magnitude of the change, which is 
affected by the choice of the baseline and forecast periods, these general features are very 
similar to those reported in RR08. However, the land-sea contrast in warming in coastal areas 
is resolved more sharply by the higher-resolution RCM simulations. 
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Figure 5.1. The  5th, 50th (median) and 95th percentiles of the probability distribution of temperature 
change. The changes represent 30-year seasonal and annual mean temperature differences between 
the periods 1961-1990 and 2021-2050. The colour scale is given below the figure. 
 
The uncertainty range in the temperature projections is non-negligible: the 5th percentile is 
generally  less  than  half  of  the  best  estimate  warming,  whereas  the  95th percentile is at least 
50% above the best estimate. The 5th percentile of the annual mean change ranges from near 
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zero in Iceland to slightly over 1°C in northern parts of Finland and Scandinavia, the 95th 
percentile  from slightly  over  2°C at  the  south  coast  of  Iceland  and  west  coast  of  Norway to  
3.5°C in northern Finland. The uncertainty in seasonal mean temperature changes is larger, 
particularly in winter when the 95th percentile of the warming exceeds 5°C in the northeastern 
parts of Fennoscandia. The maps for the 95th percentile also indicate a possibility of rather 
large warming (up to over 4°C) over the Bothnian Bay and the White Sea in summer. This 
feature is difficult to interpret because it might be associated with the simple treatmetnt of 
these water bodies in the ENSEMBLES simulations.  
 
The corresponding 5th, 50th and 95th percentiles of precipitation change are shown in Fig. 5.2. 
As the best estimate, the models suggest an annual mean precipitation increase of 5-10% over 
most of northern Europe. The change is generally largest in winter, when it exceeds 10% in 
southeastern Norway, Sweden, Finland and northern Russia. The best-estimate precipitation 
change in summer is marginally negative in Denmark, the west coast of southern Sweden and 
southernmost Norway, but positive further north and east in Fennoscandia. In Iceland, there is 
little seasonal cycle in the change, with a weak maximum in autumn.  
 
A regional feature that was not resolved in the GCM-based analysis of RR08 is a contrast in 
the change in winter precipitation across the Scandinavian mountains, with larger increases 
over the southeastern than the northwestern slopes of the mountain range. However, this 
pattern is not completely robust: an inspection of the ENSEMBLES data set reveals that the 
opposite pattern with larger precipitation increases at the west coast of Norway than further 
inland actually occurs in a few of the RCM simulations (not shown). 
 
Changes in precipitation are in relative terms more uncertain than the changes in temperature. 
The 5th percentile of annual mean precipitation change is positive in northern Russia, Finland 
and large parts of Sweden; elsewhere, it is generally negative. Conversely, the 95th percentile 
is in the range 10-20%. The uncertainty in seasonal mean precipitation changes is larger than 
that of the annual mean change. In particular, the 5-95% range of wintertime precipitation 
change in western Norway extends from a 20% decrease to a 35% increase. This likely 
reflects the high sensitivity of winter precipitation in western Norway to variations in the 
atmospheric circulation – much more snow and rain falls with westerly than with easterly 
winds – together with the variation of circulation changes among climate model simulations 
(see Räisänen et al. 2004). 
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Figure 5.2. The 5th, 50th (median) and 95th percentiles of the probability distribution of precipitation 
change. The changes represent 30-year seasonal and annual mean precipitation differences between 
the periods 1961-1990 and 2021-2050 and are given in per cent of the mean precipitation in the 
former period. The colour scale is given below the figure. 
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5.2 How probably will temperature increase (precipitation change) by at least X°C (Y%)? 

Another useful tool for illustrating the results of probabilistic analysis are maps of exceedance 
probability. Such maps show the probability of observing a climate change of at least given 
magnitude, e.g., a warming of 1°C or more. Figures 5.3-5.4 show such maps for six thresholds 
of  temperature  change,  from zero  to  5°C.  For  precipitation,  probability  maps  are  given  both  
for increases ranging from zero to 25% (Figs. 5.5-5.6) and for decreases of up to 10% (Fig. 
5.7).  
 
The contents of these maps are consistent with the percentile analysis in Figs. 5.1-5.2. 
Therefore,  it  is  unnecessary  to  discuss  them  in  all  detail.  Rather,  we  only  point  out  a  few  
interesting features: 
 
 The probability that the climate in 2021-2050 will be at least slightly warmer than it was 

in 1961-1990 is very high, generally exceeding 98% (the maps for T > 0 in Fig. 5.3). 
As far as the annual mean temperature change is concerned, this is the case even in 
Iceland, despite a slight chance of cooling over the northern North Atlantic. 

 When increasing the threshold of warming, the exceedance probabilities naturally 
decrease, the rate of decrease depending on both the best-estimate warming and the 
magnitude  of  uncertainty.  For  example,  there  is  a  50-70%  probability  of  a  wintertime  
warming of at least 3°C in northern Finland, but further southwest and in the other 
seasons the probability of so large warming is much smaller (Fig. 5.4). 

 An increase in annual mean precipitation from 1961-1990 to 2021-2050 has a high 
probability in most of the Nordic area, with values ranging from about 80% to nearly 
100% (Fig. 5.5). Only in parts and Denmark and Iceland is this probability slightly 
lower. These values are slightly higher than those reported in RR08 for the central 
decade (2031-2040) of the same 30-year period, mainly because the uncertainty 
associated with natural variability is smaller for 30-year than decadal means. 

 The sign of precipitation change is most uncertain in summer, when the probability of 
increase in the Nordic area varies from less than 40% in Denmark and the southern tip 
of Norway to about 80% in the extreme north. 

 Increases of 20% or more in annual precipitation are very unlikely in all of the Nordic 
area (Fig. 5.6). However, the larger uncertainty in seasonal mean precipitation changes 
also translates into a somewhat greater probability of large increases, particularly in 
winter. 

 Substantial decreases in precipitation (10% or more) are quite unlikely in northern 
Europe (Fig. 5.7). Considering the seasonal changes, the probability appears to be 
largest in western Norway in winter (10-20%) and in Denmark in summer (20-30%). 
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Figure 5.3. Probability that the temperature change exceeds zero (left), 1°C (middle) and 2°C (right). 
The colour scale is given below the figure. 
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Figure 5.4. As Figure 5.3, but for thresholds of 3°C (left), 4°C (middle) and 5°C (right).  
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Figure 5.5. Probability that precipitation increases at least 0% (left), 5% (middle) and 10% (right). 
The colour scale is given below the figure. 
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Figure 5.6. As Figure 5.5, but for precipitation increases of at least 15% (left), 20% (middle) and 25% 
(right).  
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Figure 5.7. As Figure 5.5, but for precipitation decreases of at least zero (left), 5% (middle) and 10% 
(right). The colour scale is reversed from the two previous figures. 
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6. Conclusions 

We have presented in this report probabilistic projections of temperature and precipitation 
change for northern Europe, focusing on changes from the baseline period 1961-1990 to the 
forecast period 2021-2050. These projections take into account the uncertainties due to natural 
climate variability and differences between climate models that dominate the uncertainty of 
climate change in the early 21st century.  Emission  scenario  uncertainty  was  not  considered,  
since this has been found to be a secondary issue on this time scale (e.g., Räisänen and 
Ruosteenoja 2008). 
 
Our projections combine information from 19 global climate model (GCM) and 13 regional 
climate model (RCM) simulations. The higher resolution of the RCMs adds some physically 
credible detail to the projections. In particular, land-sea contrasts in temperature change and 
the effects of orography on precipitation change are both better resolved. On the whole, 
however, the projections obtained by combining the two data sources are remarkably similar 
to those obtained by using GCM data alone. The findings from our earlier GCM-based 
analysis (Räisänen and Ruosteenoja 2008) remain therefore largely valid. Specifically, we 
find that 
 
 The ongoing increase in atmospheric greenhouse gas concentrations is expected to lead 

to widespread warming and an increase in precipitation in the Nordic area. 
 As the best estimate, the annual mean temperatures in 2021-2050 are projected to 

exceed the mean of 1961-1990 by about 1.5°C in Iceland, Denmark and the west coast 
of Norway. In northeastern Fennoscandia, a best-estimate warming of 2-2.5°C is 
projected. 

 The best-estimate projection of annual mean precipitation change suggests an increase 
of 5-10% in most of the Nordic area. 

 Changes in climate vary with season. Largest increases in temperature and (in most of 
the Nordic area) precipitation are likely to occur in winter.  

 Simulated precipitation changes show a marked contrast between an increase in 
northern and a decrease in southern Europe. The borderline between increasing and 
decreasing precipitation is in its northernmost position in summer, when precipitation is 
likely to decrease in parts of southern Scandinavia but increase further north. 

 Exact forecasts of future climate change are impossible. However, projections of 
temperature change are robust in the sense that the sign of the long-term mean change 
(i.e., warming) is nearly certain.  

 Changes in precipitation are relatively more uncertain than those in temperature. In 
most  of  the  Nordic  area,  however,  an  increase  of  annual  mean  precipitation  has  a  
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probability ranging from 80% to nearly 100%. Changes in summer precipitation are (in 
terms of the sign) more uncertain than precipitation changes in the other seasons.  

 Our analysis suggests a rather large uncertainty for wintertime precipitation changes in 
western Norway, where precipitation is particularly sensitive to changes in atmospheric 
circulation.   

 Even in the case of temperature, there is a lot of uncertainty in the magnitude of the 
future change. Similarly to the best-estimate warming, the uncertainty range of 
temperature change is widest in winter. 
 

Finally, we stress that the analysis in this report relates to the 30-year means of temperature 
and precipitation in 2021-2050. Because of the projected continuous increase in greenhouse 
gas forcing, climate changes are likely to grow gradually larger during this period. An 
analysis of the model simulations suggests that, as the best estimate, temperature and 
precipitation changes for the decade 2021-2030 should be about 25% smaller, and those for 
the decade 2041-2050 about 25% larger, than those reported here. Furthermore, weather 
conditions will vary from year to year, as they have done this far. Thus, for example, some 
individual cold winters or cool summers are still likely to occur, although their frequency 
becomes gradually smaller (e.g., Räisänen and Ruokolainen 2008). This issue will be studied 
later in the CES project. 
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