

Case study – Using the CES risk assessment framework in the biomass and wind power sectors

Conference on Future Climate and Renewable Energy: Impacts, Risks and Adaptation

31 May – 2 June 2010 Oslo, Norway

Jaana Keränen VTT Technical Research Centre of Finland

Outline

- Background information
- Risk Assessment Framework (RAF)
- Case-studies: biomass & wind power sectors
- Conclusions

Background

- Part of the Climate and Energy Systems (CES) project
- Develop a practical method for climate change risk assessment for power plants
- Integration of climate scenarios with technical risk assessment traditions (IEC 60300-3-9 2000 Risk analysis of technological systems)
- The risk assessment framework is designed to <u>assist power plants</u> <u>plan their future</u> by identifying and prioritising the risks and possible opportunities associated with climate change
- The suggested risk/opportunity analysis could thus result in <u>concrete proposals for the improvement</u> of the technical or operational performance of power plants

Risk definition

- <u>Risk definition</u>: risk is a possible future event, which if it occurs might impact on the ability of an organization to achieve its objectives (Hillson, 2007)
- Risk can also be seen as an opportunity that might be lost if the essential information is not available
- Thus risk can be either negative or positive

Risk assessment framework

Principles of the risk assessment work

- In order to help create a common understanding of the possible future developments, the risk assessment framework is best carried out in <u>brainstorming-based sessions</u>
- risks/ opportunities are examined mainly from two perspectives:
 - how risks/ opportunities are connected to the power plants' functions
 - how they occur seasonally

02/07/2010

Tools for data collection – Seasonal plan

 An example of the risk/ opportunities seasonal examination in biomass energy case-study

Tools for data collection – Functional model

 An overview to those functional parts of the power plant which are to be taken into account in the risk analysis process

Tools for risk/opportunity identification

Scenarios and Phenomena	Likelihood of the phenomena	Energy source, (e.g. catchment area, peat or biomass production area)	Power plant	Distribution network	Risk reduction / control / potential	Likelihood of the consequences to the energy production	Consequence category		
Phenomena according to regional scenario of future climate, hydrological model or wind model.	Probability according to IPCC 2007	The consequences of the phenomena to energy source and its usability	The consequenc es of the phenomena to the power plant	The consequences of the phenomena to the distribution network	The operations which will be done to protect against the phenomena and its consequences	Likelihood according to own ranking	Consequence category according to own ranking		
Scenario 1. warmer climate									
Phenomena 1.1 - higher temperatures, especially during winter	Very likely, the probability that the next decade is warmer is 90%.	increasing water capacity	hot weather decreases the lifetime of transformers	increased electrical resistance ◊ energy losses	increase turbine capacity	very likely			
1.2									
Scenario 2. increased precipitation									
2.1 - More rainfall: annual runoff will increase 0-8 %	very likely								

Risk estimation – Likelihood of phenomena and risks

Terminology	Explanation of the term If the phenomena happens:		
Vory likoly	There is only a one in a million chance to prevent the risk		
Very likely	The opportunity's occurrence is almost certain		
Likoby	There are some possibilities to prevent the risk		
Likely	Some factors may reduce the opportunity's occurrence		
	There are a lot of possibilities to prevent the risk		
Unlikely	A lot of factors may reduce the opportunity's occurrence		
Voryunlikoly	There are no difficulties in preventing the consequences		
Very unlikely	The opportunity's occurrence is completely precluded		

Risk estimation – Consequences of risks

- Classification of risks & opportunities could done in a variety of ways.
 For instance:
 - economic category
 - estimated effect on power production interruption

	Consequence	Risk colour	Opportunity colour
1	Minor	_	+
2	Moderate		++
3	Major		+++

VIT

Risk evaluation

Biomass study results 1/2

- Some future challenges for biomass-based power production are related to the expected increase in precipitation
- For instance, a shorter period of ground frost might hamper biomass (wood and reed canary grass) harvesting and transportation, which may also pose a risk to a power plant's fuel supply
- Also, the power plant's combustion process efficiency is rather dependent on the moisture of fuel components, so the storage aspect might focus on the avoidance of harmful moisture-based contamination

02/07/2010

Biomass study results 2/2

- Because the biomass-based fuel components supply reliability and storage capacity were seen as being more vulnerable in the future, better preparation is needed for:
 - the biomass storage capacity
 - locations could be defined partially based on the climate change information and identified risks
- Extreme weather events make it more difficult to forecast the energy needs (district heat) in the municipality → making it more difficult to control the power plants heat production

Wind power study results

- Investors are interested on extreme wind speed value forecasts for the next 2 to 3 decades (repayment period)
- Frozen power plant structures could result in a significant decline in power production. Increased weather extremes can result in significant ice formation & more serious freezing damage to the power plants' infrastructure
- At the same time, higher wintertime temperatures and a shorter ice season would probably reduce wintertime power interruptions and increase power production
- Pack-ice could cause problems for wind turbines located on sea areas

Conclusions

- The risk assessment framework was seen to generate the best feedback when used in conjunction with local environmental knowledge (e.g. powerplant's operating personnel)
- Climate scenarios provide the basic structure for an examination, but there is a need for the "translation" of the knowledge & modelling results in practice (link between climate scenario, etc. information and the stakeholders)
- The necessary climate scenarios, etc. information needs to be available stakeholders (for example, "Climate services")
- Stakeholders might not even know what kind of information could be produced

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

02/07/2010

Thank you!

VTT creates business from technology