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Outline of this talk

1) Projected runoff changes over the next
century — the global and continental
picture

2) Downscaling to the regional and
watershed scale

Statistical downscaling
Dynamical downscaling

3) Hydrological and water resources
implications -- examples

4) Weak links and the path forward



1) Projected global and regional
runoff changes



Median runoff sensitivities per degree of global warming,
from 68 model pairs — 30-year model average runoff minus
1971-2000 model average (23 models, 3 global emissions

scenarios)
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Continental U.S. and Alaska
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A1B scenario Top 200 basins

Precipitation change per Degree T change in the
218t Century

Evaporation change per Degree T change in the
21st Century

Runoff change per Degree T change in the 21st
Century
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2) Downscaling

a) Statistical

b) Dynamical
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Bias Correction

bias-corrected climate scenario from NCDC observations
f-::-ru;ing month m forcing observed . month m
varahle wariable distrib e
(F.T) . - “'
* L7 7 climate
\f\/ . model
- distrib
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raw climate scenario from PCM historical run

Note: future scenario temperature trend (relative to control run)
removed before, and replaced after, bias-correction step.



Spatial Downscaling

monthly PCM interpolated to
anomaly (T42) VIC scale
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Regional Bias: JULY

spatial example obs prcp GSM prep

GSM: NCEP Global
Spectral Model

S ——

an TS 100 125 150 175 200 225 230
monthly tetal {mm)

obs temp GSM temp

manthly average (C)



Verification using NCEP

(GSM) output

Process into the daily VIC-scale
input time series

Force hydrology model to

produce streamflow

Ohio R. flow @ Metropolis, IL
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Dynamical Downscaling (Regional
Climate Model)

Motivation: Statistical approaches are dynamically
inconsistent (postprocess climate model output,
then force a land (hydrology) model with
characteristics different from those in the GCM -
notably evapotranspiration



Regional Climate Modeling at CIG
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Land-Atmosphere Interactions

Wintertime Change from 1990s to 2050s

Snow Cover Change Temperature Change
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Extreme Precipitation

CCSM
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Change from 1970-2000 to 2030-2060 in the percentage of total precipitation
occurring when daily precipitation exceeds the 20t century 95t percentile

Larger increase on windward slopes of Cascades, Columbia basin
«Smaller increase or decrease along Cascade crest i
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The North American Regional Climate Change

Assessment Program (NARCCAP)

« Exploration of multiple uncertainties in
regional model and global climate model
regional projections.

« Development of multiple 50-km regional
climate scenarios for use in impacts
assessments.

« Evaluation of regional model performance

50-km Grid
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Drawbacks of dynamical downscaling

* Requires postprocessing for bias correction and
(often) spatial downscaling, just like GCM output

* Adds a layer of uncertainty as to implementation
(e.g. to nudge or not to nudge)?

* Highly computationally intensive, hence usually
sacrifice representation of GCM-level model
uncertainty

* |s the eventual solution higher GCM resolution?




3) Hydrological and water resources
implications — examples

A) Columbia River basin
B) Colorado River basin

C) Washington climate change impacts
assessment — Yakima River basin




3a) Hydrology and water management
implications: Columbia River Basin
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April 1 Snowpack Projections
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P=cale (dash) and T'shift (solid) Control (dash) and BAU avg. (solid)
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Columbia River Basin Water Resource Sensitivity
to PCM Climate Change Scenarios
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Percent of Control Run Climate
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3b) Hydrology and water management
implications: Colorado River basin



PCM Projected Colorado R. Temperature
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PCM Projected Colorado R. Precipitation

Timeseries Annual Average
BOD -
Annual Avg,. Precip 40 | precp.
500 ; hist. avg.
400
: : |
300 = N J—— Sim. Hist.
—— Control
200 Fer-1
—_— - "
BAU  —BAUaw ctrl. ave. Pt
100 0 -
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 12345678 08101112

month

Period 1 2010-2039 Period 2 2040-2069




Annual Average Hydrograph
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April 1 Snow Water Equivalent

April 1 SWE
Relative to Historical
Comtrol: BO T
Period 1: TE%
Period 2: T19%
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Annual Flow (BCM)

Natural Flow at Lee Ferry, AZ
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Natural Flow at Imperial Dam, AZ
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Historic Streamflows to Validate

Projected Inflows to assess future performance

of system

Monthly timestep

Basin storage aggregated into 4

storage reservoirs

— Lake Powell and Lake Mead have 85% of

basin storage

Reservoir evaporation = f(reservoir

surface area, mean monthly
temperature)

Hydropower = f(release, reservoir

elevation)
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Total Basin Storage
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Annual Releases to the Lower Basin

BCM/YR.
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BCM/YR.

Annual Releases to Mexico

Historical
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Annual Hydropower Production

Energy, GW - hr
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3¢) Washington Climate Change Impacts
Assessment

2007 State Legislature of Washington passed HB 1303 which mandated the
preparation of a comprehensive assessment of the impacts of climate
change on the State of Washington to be performed by the UW Climate
Impacts Group

The assessment was to be focused on the impacts of global warming
generally, and specifically in relation to:

public health,

agriculture

coastal zone

forestry

Infrastructure (specifically stormwater)
water supply and management
salmon and ecosystems

energy

For summary see Climatic Change special issue, later this year
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Focus
Watersheds

e Columbia River

— Washington portion
e Puget Sound

— Green River

— Snohomish River

— Cedar River

— Tolt River

e Yakima River

-

* Elasticity Sites § > Basins ] s




Variable Infiltration Capacity (VIC)
Macroscale Hydrologic Model

Grid Cell Vegetation Coverage

Cell Energy and Moisture Fluxes
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Historical

April 1
Snow-Water
Equivalent

- A
Historical Change
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Elsner, M.M. et al. 2009: Implications of 21st Century climate change for the hydrology of

Washington State (in review)



IMPACTS

Weekly Streamflow Projections

Yakima River at Parker
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Yakima River Basin
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Yakima River Basin
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 Basin shifts from snow to more rain dominant




Yakima River Basin
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02 04 06 8 . historical
Proration Rate, %

Basin shifts from snow to more rain dominant
Water prorating, junior water users receive 75% of allocation
Junior irrigators less than 75% prorating (current operations):
14% historically
32% in 2020s A1B (15% to 54% range of ensemble members)
36% in 2040s A1B
77% in 2080s A1B




Shifts in energy production and

demand — Columbia River basin
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Weak links and the path forward

1) Stationarity is dead (how do we
represent nonstationarity in the
planning process

2) Understanding the hydrologic
sensitivities

3) Representing hydrologic and water
management uncertainty
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- Contention is virtually unassailable given observed trends
globally and regionally (although certainly not everywhere for all
variables!)

* Replacement for established risk, uncertainty, and reliability
protocols is less obvious

* Distinguishing low frequency variability from trends is very
difficult



Understanding the hydrologic
sensitivities



Temperature Sensitivity

percent change in flow per °C temp increase

VIC Noah 2.7 SAC SAC NWS*
tmin & tmax tmax tmin & tmax tmax  tmin & tmax tmax __tem
historic |53 __] 9.8 70T -158] [5L]] -89 3.9
1 deg -4.9 9.4 -1.4 -15.4 -5.1 -8.9 -3.9
2 deg -4.6 -9.0 -7.1 -15.2 -5.1 9.1 -3.8
3 deg -4.3 -8.6 -6.5 -14.7 -5.0 9.2 -3.6

Precip Elasticities

percent change in flow per percent increase in precip

VIC || Noah2.7] SAC SACNWS
-30% | 2.7 6.0 4.4 5.0°
-20% | 2.5 4.9 3.7 3.8°
-10% | 2.3 4.2 3.2 3.0
historic | 2.2 3.6 2.7 2.4
+10% | 2.1 3.1 24 2.2

A Lake Powell inflow, lowest location on Colorado SAC NWS simulates
B Reference=historic, therefore deltas larger (30 and 20% instead of 1% as used in other calculations)



3) Representing hydrologic and water
management uncertainty



