Summertime Precipitation in Finland under Recent and Projected climate

Jussi Ylhäisi¹, Hanna Tietäväinen², et al.

¹University of Helsinki, Division of Atmospheric Sciences
²Finnish Meteorological Institute, Climate Change
Motivation and objective

- In northern Europe, precipitation amounts are expected to increase with increasing temperatures in the projected future climate.

- The largest fractional increase in precipitation is expected to take place in winter, whereas the increase is more modest in summertime.

- Changes in summertime precipitation during the last 100 years were analyzed based on high-resolution observed data set
 - Comparison of three different data sets

- Future precipitation projections until 2100 were studied based on an ensemble of 13 RCM’s.
Study area

- Two study areas sized 100 x 100 km located in north-eastern (NE) and south-western (SW) part of Finland
- Climatologically different zones:
 - **NE:**
 - between middle- and north-boreal zones
 - continental climate
 - **SW:**
 - between hemi- and south-boreal zones
 - maritime influence
- Past and future monthly precipitation sums in May-September
Data and Methods

3 observational data sets

FMI grid
- Longest and highest-resolution data set
- Observed monthly precipitation
- 1908-2008
- 10 x 10 km grid size

E-OBS 2.0 (Haylock et al.)
- Monthly values calculated from daily values
- 1961-2000
- 0.25 degree grid

CRU TS2.1 (Mitchell and Jones)
- Global monthly data
- 1961-2000
- 0.5 degree grid
Data and Methods

13 regional climate model (RCM) simulations

- provided by the EU FP6 ENSEMBLES project
- SRES emissions scenario A1B
- 0.25 degrees resolution
- 1961-2100

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Global model</th>
<th>Regional model</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4I-HC16</td>
<td>HadCM3Q0</td>
<td>RCA3</td>
</tr>
<tr>
<td>DMI-ARPEGE</td>
<td>ARPEGE</td>
<td>HIRHAM</td>
</tr>
<tr>
<td>DMI-ECHAM5</td>
<td>ECHAM5-r3</td>
<td>DMI-HIRHAM5</td>
</tr>
<tr>
<td>ETHZ-HC0</td>
<td>HadCM3Q0</td>
<td>CLM</td>
</tr>
<tr>
<td>ICTP-ECHAM5</td>
<td>ECHAM5-r3</td>
<td>RegCM</td>
</tr>
<tr>
<td>KNMI-ECHAM5</td>
<td>ECHAM5-r3</td>
<td>RACMO</td>
</tr>
<tr>
<td>METO-HC0</td>
<td>HadCM3Q0</td>
<td>HadRM3Q0</td>
</tr>
<tr>
<td>METO-HC3</td>
<td>HadCM3Q3</td>
<td>HadRM3Q3</td>
</tr>
<tr>
<td>METO-HC16</td>
<td>HadCM3Q16</td>
<td>HadRM3Q16</td>
</tr>
<tr>
<td>MPI-ECHAM5</td>
<td>ECHAM5-r3</td>
<td>REMO</td>
</tr>
<tr>
<td>SMHI-BCM</td>
<td>BCM</td>
<td>RCA</td>
</tr>
<tr>
<td>SMHI-ECHAM5</td>
<td>ECHAM5-r3</td>
<td>RCA</td>
</tr>
<tr>
<td>SMHI-HC3</td>
<td>HadCM3Q3</td>
<td>RCA</td>
</tr>
</tbody>
</table>

CES Conference, Oslo 31.5.-2.6.2010
• Comparison of **monthly precipitation sums** in **1961-2000** between different data sets and the multi-model mean (MMM)

• Differences between the observed data sets are smaller in SW than in NE

• MMM overestimates precipitation, but is closer to observations in SW than NE → Better observational coverage in SW
- Precipitation trends (mm / 10 yr) in *1961-2000* according to **observations** and **model simulations** (MMM)

- Including the range of simulations (whiskers in the plot)
 - Range is very large because of the climate’s internal variability
 - In every case, the observed trend does not even fit the simulation range
• Long-term precipitation trends (mm / 10 yr) in the
 • **PAST** as observed **1908-2008** and
 • **FUTURE** as multi-model-mean (MMM) **1961-2100**
• Future MMM trends are all increasing
 • MMM is not “a realization of the real-world” but heavily smoothed
Large variation between model simulations = climate’s internal variability

Increase in summertime precipitation by the end of the 21st century
Relative increase largest in **May**

NE: Absolute increase largest in **May-June** → the difference between the driest and wettest summer months will decrease

SW: Absolute increase largest in **July** → increasing the inter-monhtly differences in precipitation

Smallest increase in August in both areas
Conclusions

• Most of the past precipitation trends are statistically not significant
 • During the last decades precipitation has increased in early summer (May-July) and decreased in late summer (August-September)

• Model projections for the future indicate increase in precipitation by 2100
 • In SW, increasing the difference between the wettest and driest summer months
 • In NE, vice versa
 • Very large range within the simulations

• Larger number of observation stations in the study area leads to
 • better compatibility between different observational data sets
 • smaller bias in the model simulations
References
