www.geus.dk

NONAM PhD course, Copenhagen, August 22-26, 2011

Uncertainty – terminology, concepts, tools and importance in climate change adaptation

Jens Christian Refsgaard

Geological Survey of Denmark and Greenland Ministry of Climate and Energy

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

Acknowledgements

- Torben O. Sonnenborg, GEUS
- Hans Jørgen Henriksen, GEUS
- Anker Lajer Højberg, GEUS
- Peter van der Keur, GEUS
- Lieke van Roosmalen, Flinders University Adelaid (previously PhD student, University of Copenhagen)
- Lauren P. Seaby, PhD student, GEUS
- HYACINTS team (<u>www.hyacints.dk</u>)
- CRES team (<u>www.cres-centre.dk</u>)
- Other colleagues at GEUS

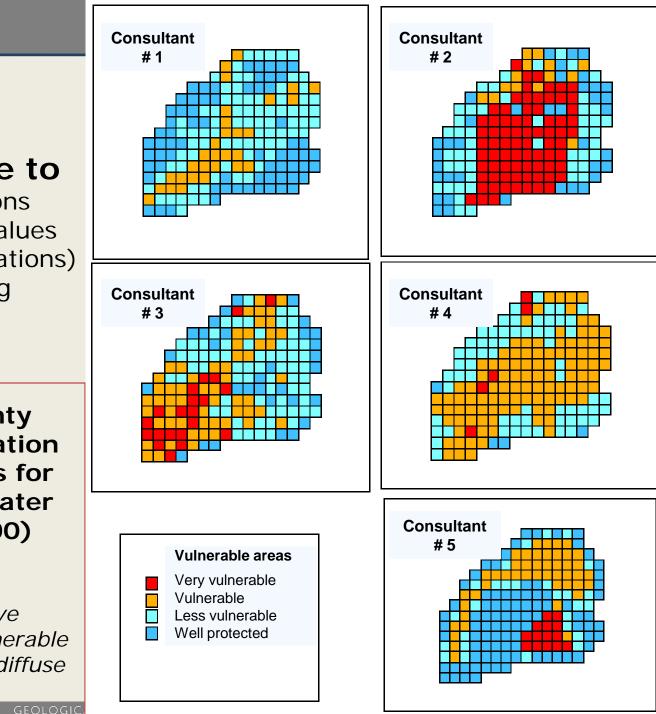
Outline

Part 1 – Terminology and concepts

Part 2 - Tools

Part 3 – Uncertainty in climate change impacts and adaptation

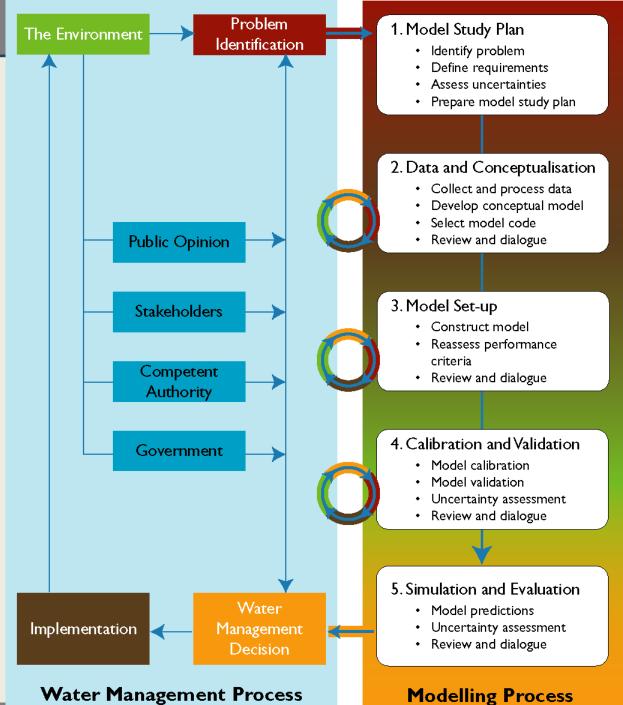
Part 1 – Terminology and concepts


- Why is uncertainty assessment important?
- When does uncertainty occur in the water management process?
- What is uncertainty?
 - Definition
 - Characterisation of uncertainty
 - Level
 - Nature
 - Source
- What is risk?
- Conclusions

Prediction uncertainty due to

data interpretations
model parameter values
models (process equations)
problem framing

Copenhagen County project on identification of suitable methods for assessing groundwater vulnerability (2000)


Assessments from five consultants on areas vulnerable to nitrate pollution from diffuse sources

GEUS

The Water Management Process and the Hydrological Modelling Process

Uncertainty assessments influence throughout – not only in evaluating the final model simulations

GEOL

What is uncertainty?

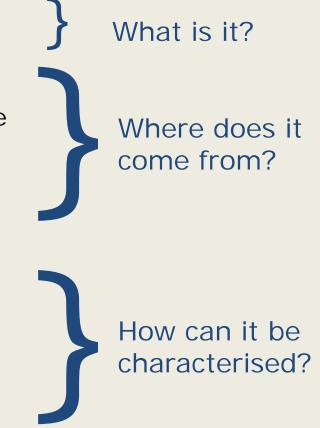
- typical definition in water resources (Klauer and Brown, 2003)

Definition (Uncertainty): A person is uncertain if s/he lacks confidence about the specific outcomes of an event. Reasons for this lack of confidence might include a judgement of the information as incomplete, blurred, inaccurate or potentially false.

Uncertainty is a property (state of confidence) of the decision maker rather than a property (state of perfection) of the total body of available knowledge \rightarrow subjectivity is an important aspect of how we define uncertainty

Example: A person may be uncertain about the exact value of a river discharge value due to uncertainties related to instruments used for measurements, representativeness of measurements, method of transforming measurements (of often secondary variables) to discharge. Two different persons may have different perceptions of the magnitude of this uncertainty.

Uncertainty is not a province of probability theory – it must be seen in a much broader perspective


GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

www.geus.dk

What is uncertainty – IPCC Glossary

(Bates et al., 2008, Climate change and Water. IPCC Technical Paper VI)

An expression of the degree to which a value (e.g., the future state of the *climate system*) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures, for example, a range of values calculated by various models, or by qualitative statements, for example, reflecting the judgement of a team of experts.

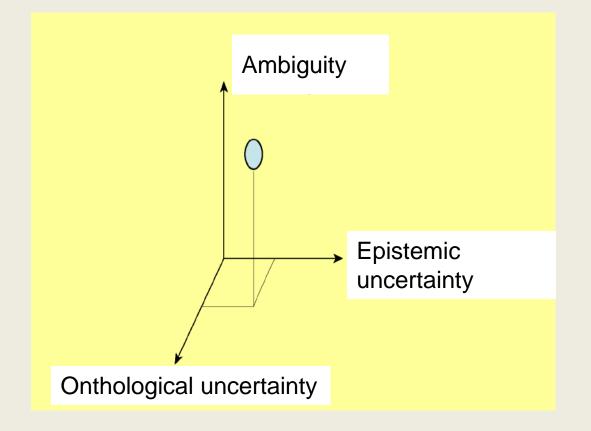
Nature of uncertainty

Epistemic uncertainty

- uncertainty due to imperfect knowledge
- → reducible by more data and knowledge

Ontological uncertainty

(Other names: unpredictability, stochastic, variability uncertainty)


- uncertainty due to inherent variability, e.g. climate variability
- → non-reducible

Ambiguity

- uncertainty due to multiple knowledge frames among stakeholders
- → reducible by more dialogue and knowledge sharing

Characterisation of uncertainty according to its nature

(Figure adapted from Brugnach et al., 2009)

Level of uncertainty

Statistical uncertainty

- All outcomes known
- All probabilities known

Scenario uncertainty

- Range of outcomes of plausible futures (not all known)
- No probabilities known

Qualitative uncertainty


- Not all outcomes necessarily known
- Cannot be described statistically

Ignorance

• We are aware that there is something we do not know

Total ignorance (=epistemic arrogance)

We do not know that there is something we do not know

Sources of uncertainty in Water Resources Management

Data

- physical, chemical, biological, etc.
- scale problems (temporal and spatial)

Model

- bugs in model code
- numerical solution (approximations)
- parameter values
- model structure (process equations, hydrogeological conceptual model)

Context – boundary conditions

- future climate
- legislation, regulatory conditions, etc.

Framing of problem

 multiple knowledge frames among decision makers and stakeholders

Uncertainty Matrix

- Mapping of uncertainty characteristics

		Le	evel (type) o	of uncertain	ity	Nature		
Source of		Statistical	Scenario	Qualitative	Ignorance	Epistemic	Ontological	Ambiguity
uncer	rtainty	uncertainty	uncertainty	uncertainty		uncertainty	uncertainty	
Inputs	System							
	data							
	Driving							
	forces							
	Model							
Model	structure							
	Technical							
	Parameters							
Context	Future							
(boundary	climate							
conditions)	Regulatory							
	conditions							
Framing	Multiple							
_	knowledge							
	frames							
							donted from Wally	a_{n} at al. (2002)

Adapted from Walker et al. (2003)

What is risk? - alternative definitions

- Risk is something you can compute (= statistical uncertainty) while uncertainty is something you cannot compute (= the other types of uncertainty)
- Risk = probability
- Risk = probability of exceedance of a critical threshold

A risk is characterised through a probability of an adverse event occurring and a measure of the associated event. Larger consequence and larger probability lead to a larger overall risk (e.g. Risk = Probability x Damage)

Conclusions – Part 1

Terminology

 Be aware of ambiguities in terminology used by others – and be specific defining the terminology you use

Concepts

- Uncertainty assessment should influence the entire management approach right from the beginning – and not only after some modelling studies
 - Stakeholders should be involved in evaluating uncertainties in connection with problem framing – and throughout a decision process and associated model studies
 - Model predictions should always include information on prediction uncertainties
- All sources and types of uncertainty should be considered in decision making – not only statistical uncertainty

Part 2 – Tools

- Tools for different purposes
 - Statistical uncertainty
 - Scenario uncertainty
 - Qualitative uncertainty

Tools for uncertainty assessment

- Numerous methods/tools and some guidances to identify appropriate tools

- Harmoni-CA Guidance 1 Uncertainty Analyses / Refsgaard et al. (2007) *Environmental Modelling and Software*
 - 14 groups of tools for quantitative, scenario and qualitative analyses.
- Matott et al. (2009) Water Resources Research
 - 65 tools for quantitative analyses
- Van der Keur et al. (2010) Water Resources Management
 - Overview over 22 different guidance documents providing guidance to select appropriate uncertainty assessment tools.

Methodologies for uncertainty assessment

- Selected methods described in Harmoni-CA Uncertainty Guidance Document

- Data Uncertainty
- Error Propagation Equations
- Expert Elicitation
- Extended Peer Review (review by stakeholders)
- Inverse modelling (parameter uncertainty)
- Inverse modelling (predictive uncertainty)
- Monte Carlo Analysis
- Multiple Model Simulation
- NUSAP
- Quality Assurance
- Scenario Analysis
- Sensitivity Analysis
- Stakeholder Involvement
- Uncertainty Matrix

More details in

- Harmoni-CA Guidance
- Refsgaard et al. (2007)

research project supported by the European Commission under the Fifth Factoreuk Programmer and contributing to the implementation of the Kny citie. "Statements Management and Casella of Waley" within the European European and Substates the Restance of .

Suitable methods to deal with various types of uncertainty

Source of uncertainty		Taxonomy (types of uncertainty)					
		Statistical	Scenario	Qualitative	Recognised		
		uncertainty	uncertainty	uncertainty	ignorance		
Context	Natural, technological, economic, social, political	EE	EE, SC, SI	EE, EPR, NUSAP, SI, UM	EE, EPR, NUSAP, SI, UM		
Inputs System data		DA <mark>, EPE,</mark> EE, QA	DA, EE, SC, QA	DA, EE	DA, EE		
	Driving forces	DA, EPE, EE, QA	DA, EE, SC, QA	DA, EE, EPR	DA, EE, EPR		
Model	Model structure	EE, MMS, QA	EE, MMS, SC, QA	EE, NUSAP, QA	EA, NUSAP, QA		
	Technical				QA		
Parameters		IN-PA, QA	IN-PA, QA	QA	QA		
Model outputs		EPE, EE, IN- UN, <mark>MCA,</mark> MMS, SA	EE, IN-UN, MMS <mark>,</mark> SA	EE, NUSAP	EE, NUSAP		

Abbreviations of methodologies:

	J		
DA	Data Uncertainty	MMS	Multiple Model Simulation
EPE	Error Propagation Equations	NUSAP	NUSAP
EE	Expert Elicitation	QA	Quality Assurance
EPR	Extended Peer Review (review by stakeholders)	SC	Scenario Analysis
IN-PA	Inverse Modelling (parameter estimation)	SA	Sensitivity Analysis
IN-UN	Inverse Modelling (predictive uncertainty)	SI	Stakeholder Involvement
MCA	Monte Carlo Analysis	UM	Uncertainty Matrix

Uncertainty Matrix

- A dialogue platform for modeller, water manager and stakeholders to identify and characterise uncertainty as a basis for framing of the modelling study

	Type of uncertainty			Importance		
Source of uncertainty	Statistical	Scenario	Qualitative	Recognised	Weight	(uncertainty x
,	uncertainty	uncertainty	uncertainty	ignorance		weight)
		-				
Problem context						
- future agritultural practise		medium	medium	medium	large	medium
- future climate		medium	medium	large	medium	medium
Input data						
- catchment data	medium			small	large	medium
- nitrate load from agriculture	small			small	large	small
Parameter uncertainty						
- water quantity	small			small	medium	small
- water quality	medium			medium	medium	small
Model structure (conceptual)						
- geology		large	large	medium	large	large
- nitrate reduction in underground		medium	medium	large	large	large
Model technical uncertainty						
- numerical approximation	small			small	medium	small
- bugs in software				medium	medium	small
					SUM:	

Error propagation

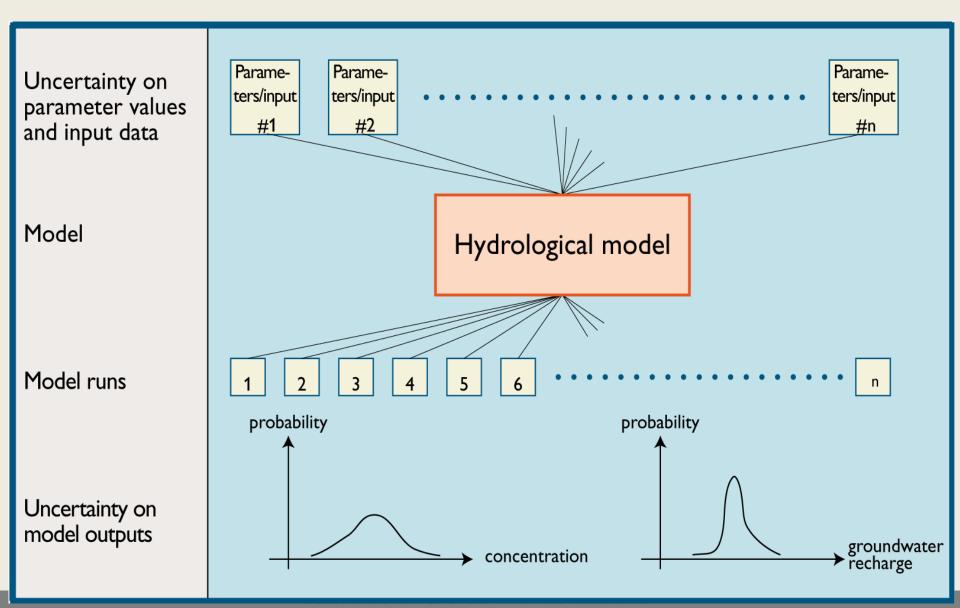
Box 1 Error propagation rules using standard deviation (σ)

Addition and Subtraction: z = x + y + .. or z = x - y - ..

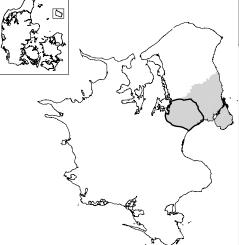
$$\sigma_z = \sqrt{(\sigma_x^2) + (\sigma_y^2) + \dots}$$

Multiplication by an exact number: z = c x

$$\sigma_z = c\sigma_x$$

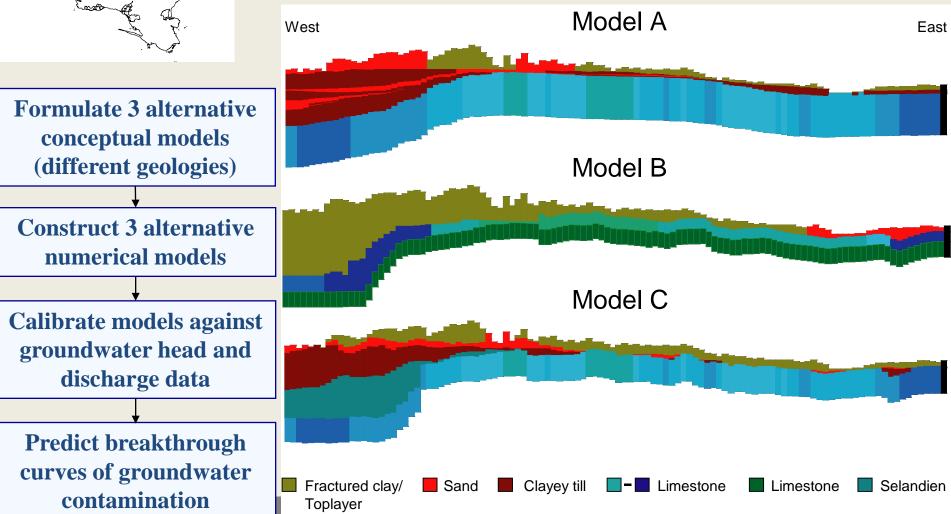

Multiplication and Division: z = x y or z = x/y

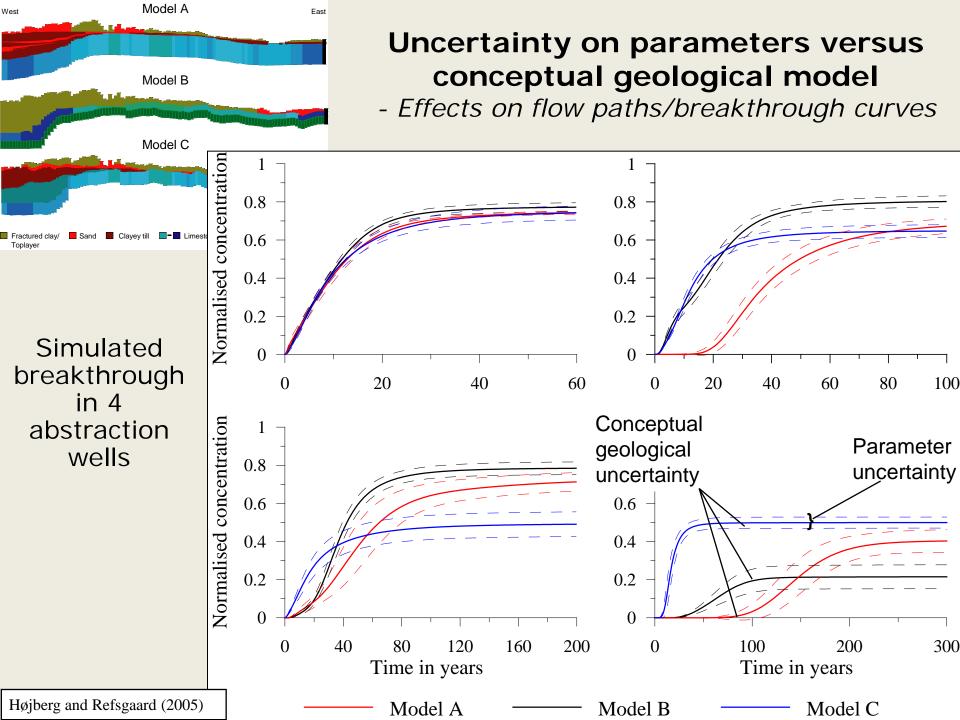
$$\frac{\sigma_z}{z} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2 + \dots}$$


Products of powers: $z=x^m y^n$

$$\frac{\sigma_z}{z} = \sqrt{\left(\frac{m\sigma_x}{x}\right)^2 + \left(\frac{n\sigma_y}{y}\right)^2}$$

Monte Carlo Analysis




www.geus.dk

Multiple modelling approach

- Example with focus on alternative geological interpretations

NUSAP - Numerical, Unit, Spread, Assessment, Pedigree

- Example for evaluating goodness of a conceptual model

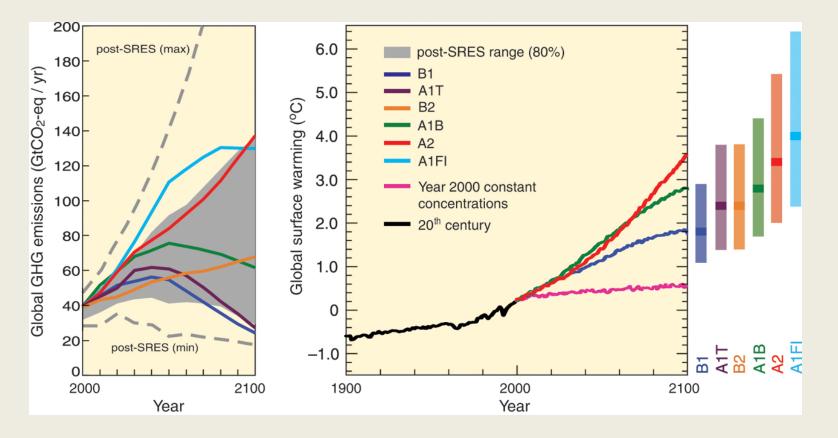
Score	Score Supporting empirical evidence		Theoretical understanding	•		Colleague consensus
	Proxy	Quality and quantity		underlying mechanisms		
4	Exact measures of the modelled quantities	Controlled experiments and large sample direct measurements	Well established theory	Model equations reflect high mechanistic process detail	Highly plausible	All but cranks
3	Good fits or measures of the modelled quantities	Historical/field data uncontrolled experiments small sample direct measurements	Accepted theory with partial nature (in view of the phenomenon it describes)	Model equations reflect acceptable mechanistic process detail	Reasonably plausible	All but rebels
2	Well correlated but not measuring the same thing	Modelled/derived data Indirect measurements	Accepted theory with partial nature and limited consensus on reliability	Aggregated parameterised meta model	Somewhat plausible	Competing schools
1	Weak correlation but commonalties in measure	Educated guesses indirect approx. rule of thumb estimate	Preliminary theory	Grey box model	Not very plausible	Embryonic field
0	Not correlated and not clearly related	Crude speculation	Crude speculation	Black box model	Not at all plausible Example from Refs	No opinion

Conclusions – Part 2

Tools

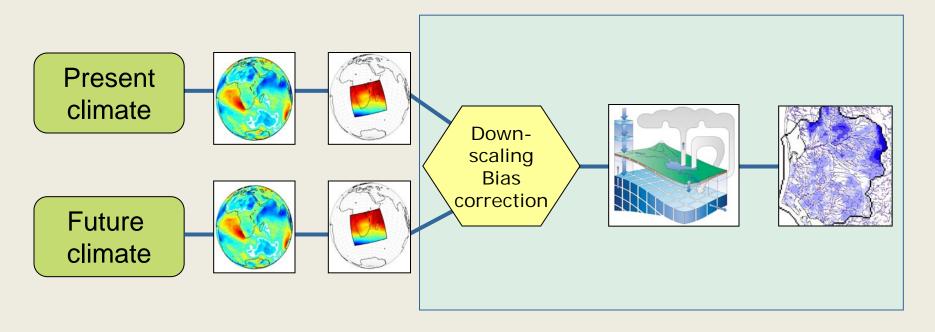
•A large range of suitable methodologies and tools exists

•Different types of tools are suitable for different types/levels of uncertainty


- Statistical uncertainty
- Scenario uncertainty
- Qualitative uncertainty

"Uncertainty is not a province of probability theory"

Part 3 – Uncertainty in climate change impacts and adaptation


- Why is uncertainty particularly important in climate change studies and management?
- Climate change impact predictions methodology illustrated by example
- Cascade of uncertainties

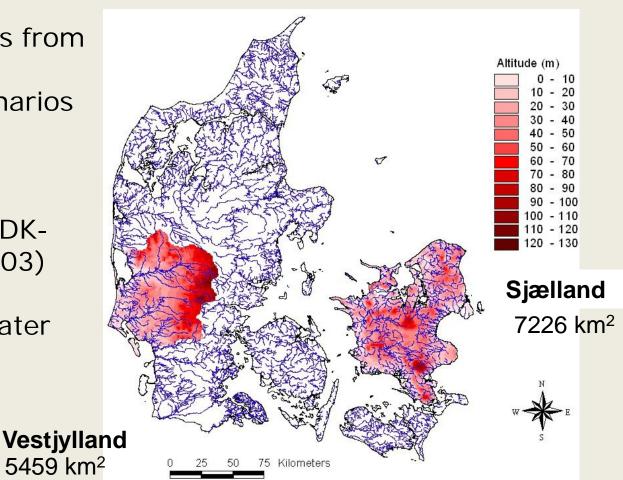
Why is uncertainty particularly important in relation to climate change?

 Hydrological models used for climate impact predictions can not be calibrated against data from future climate conditions →larger prediction uncertainties

Calculations of climate change effects on hydrology

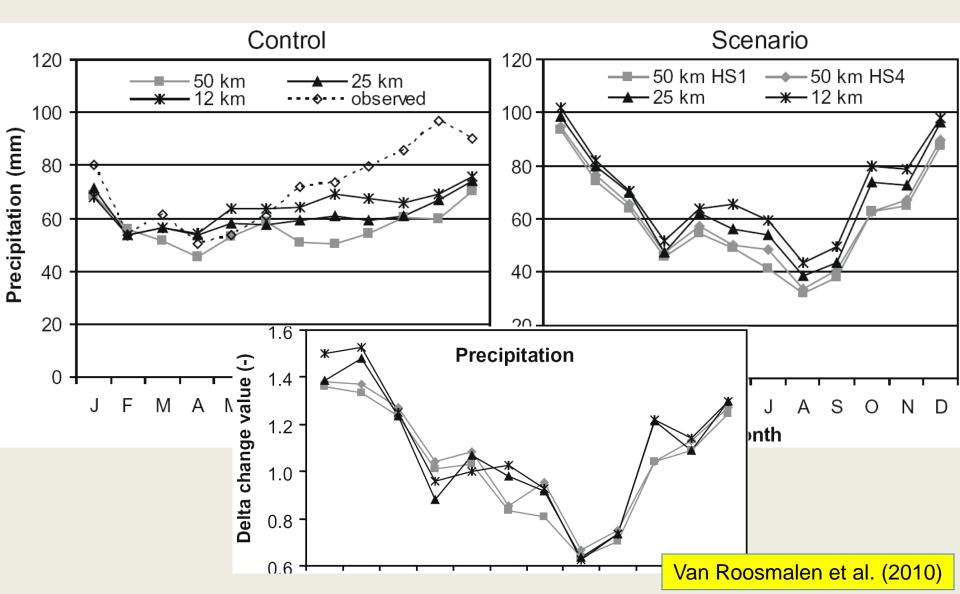
Global	Regional	Hydrological	Models
100-250 kn	n 10-25 km	50-500 m	Scale

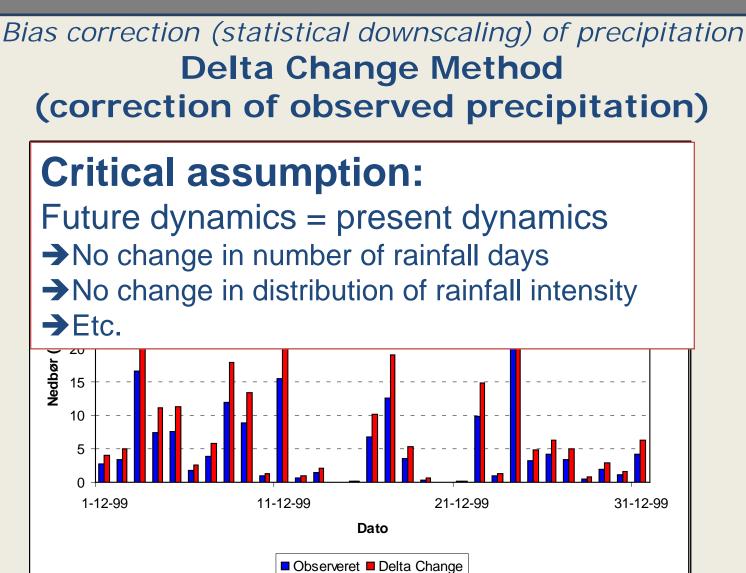
Example of calculation of climate change impacts on hydrology


(van Roosmalen et al., 2007, 2010)

Climate model results from PRUDENCE

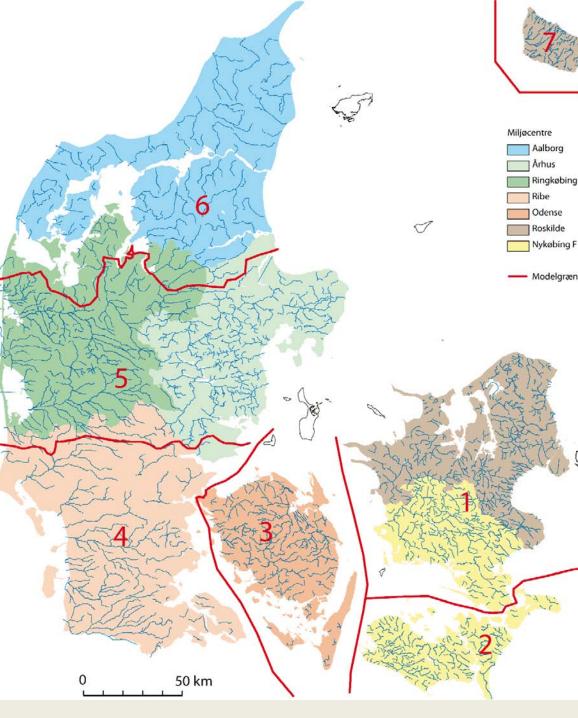
- A2 og B2 scenarios
- HIRHAM
- 2071-2100


Hydrological model (DKmodel version 2003)


Impacts on groundwater heads and river discharges

HIRHAM model results

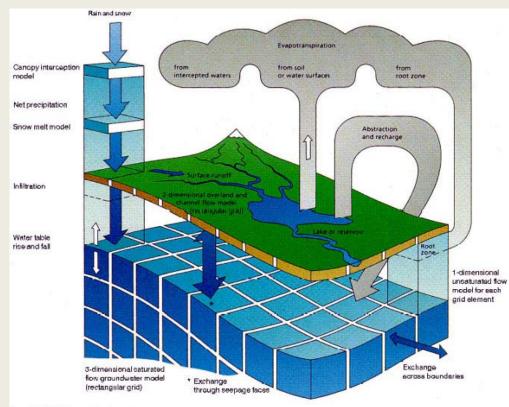
- A2 scenario, different sea surface temperature forcings over Baltic Sea (HS1, HS4)



DK-model - The hydrological model

Seven sub-models

Horisontal discretization: 500 m
Vertical discretization
layers, varying numbers and geometry


Delmodel	Samlede landareal (km²)	Aktive grids pr. lag
Omr. 1 – Sjælland	7163	37569
Omr. 2 – Sydhavsøerne	2042	13885
Omr. 3 – Fyn	3473	24009
Omr. 4 – Sønderjylland	7897	35869
Omr. 5 – Midtjylland	11578	49993
Omr. 6 – Nordjylland	9934	47649
Omr. 7 – Bornholm	2358	10106

Model code

MIKE SHE/MIKE11

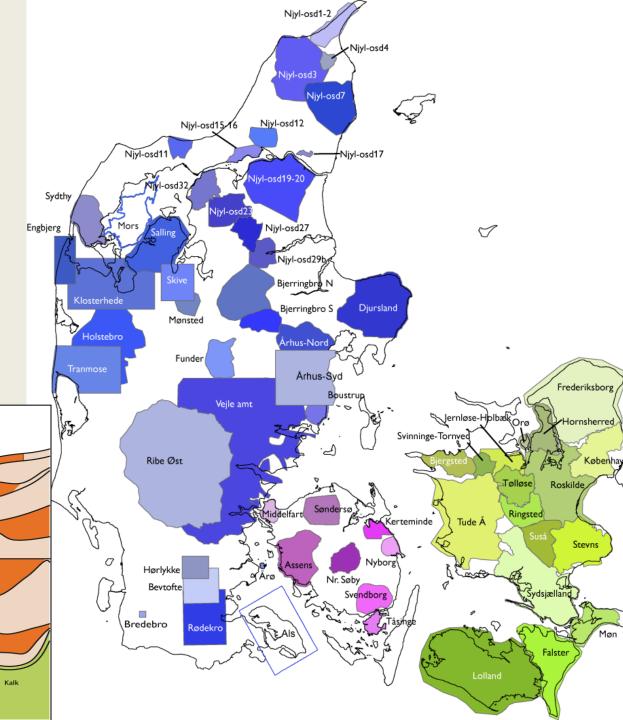
- 3D groundwater flow
- 2D overland flow
- Drain flow (pipes, ditches)
- 1D river routing
- 1D unsaturated zone, Twolayer module (evapotranspiration)
- Degree-day snow melt/accumulation

Copyright DHI - Water and Environment

Geology/ hydrostratigraphy

•Borehole data

Kvartært sand


Prækvar tær t le

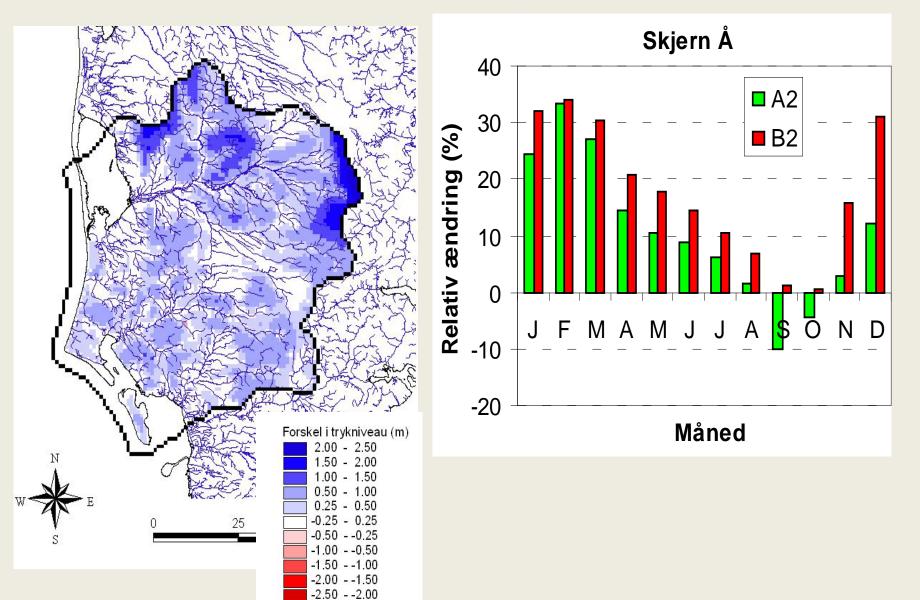
Kvartært lei

•Geological interpretation

 Incorporation of knowledge from more than 50 local geological models established by regional authorities (incl. geophysical data)

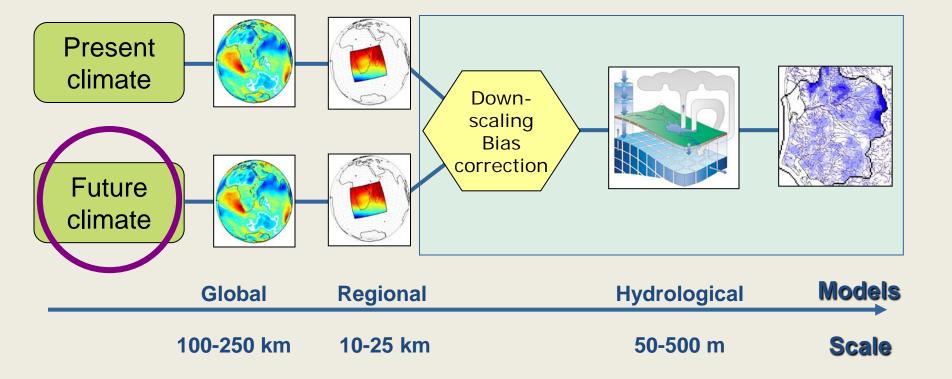
distribueret efter jortartskort (tørv, ler, sand)

DK-model data basis beyond geology

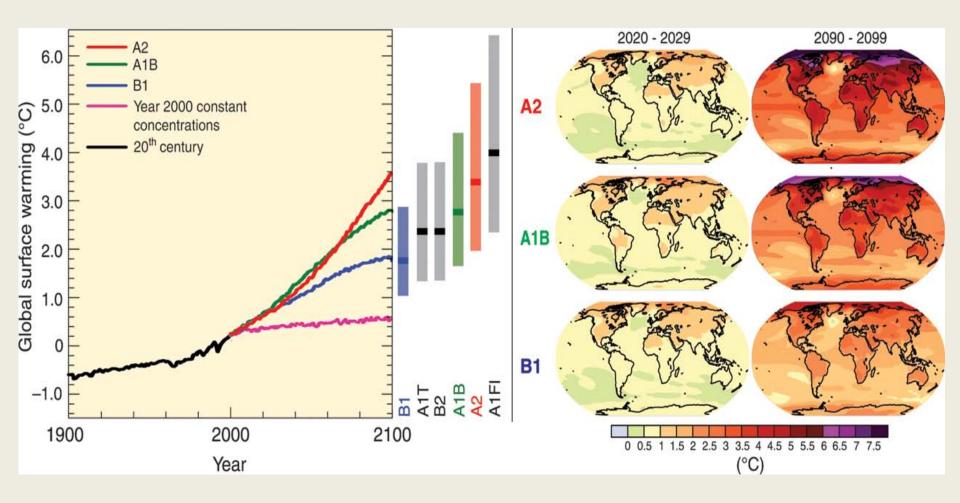

Model setup

- Rivers
 - River cross-sections (MIKE11) for all major streams
 - Discharge from urban sewage treatment plants
- Water supply all as groundwater abstraction
 - 23,500 plants (40,000 intakes) for water supply, including irrigation
- Soil types: National database (DJF)
- Precipitation: DMI's 10 km grid daily values
- Temperature, potential evapotranspiration: DMI's 20 km grid

Model calibration/validation (1990-2006)

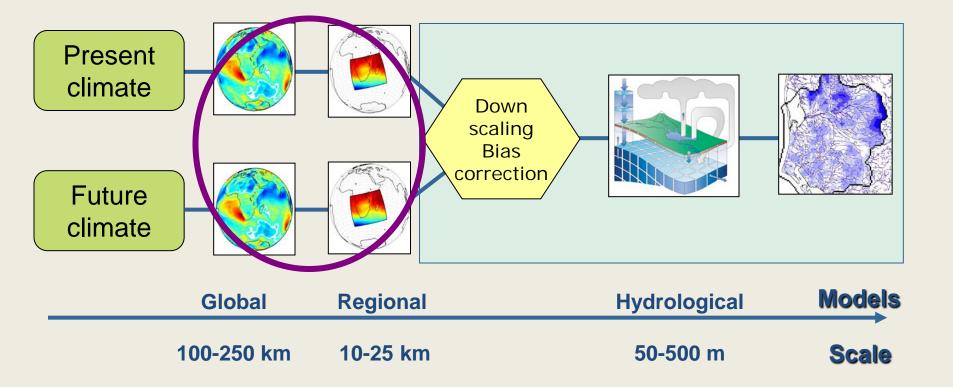

- 183 discharge stations, daily values
- > 10,000 wells with groundwater head observations

Change in groundwater head and discharge



Climate change impacts on hydrology **The cascade of uncertainties**

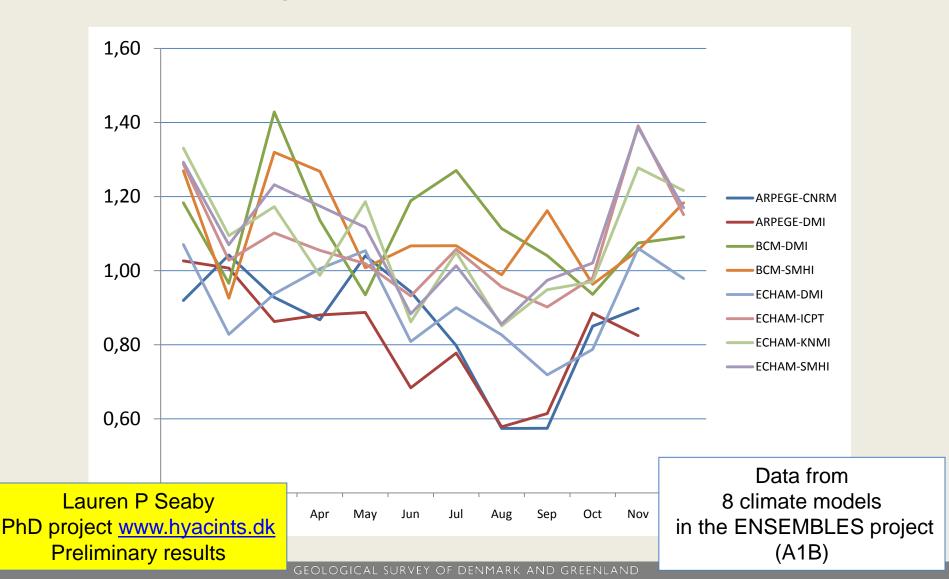
Emission scenarios



IPCC Greenhouse Gas Emission Scenarios

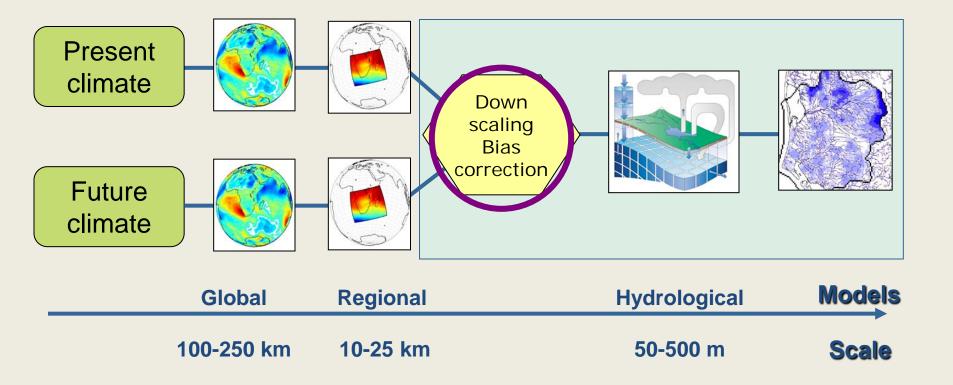
Climate change impacts on hydrology **The chain of uncertainties**

- Emission scenarios
- Climate models (GCM + RCM)



G E U S

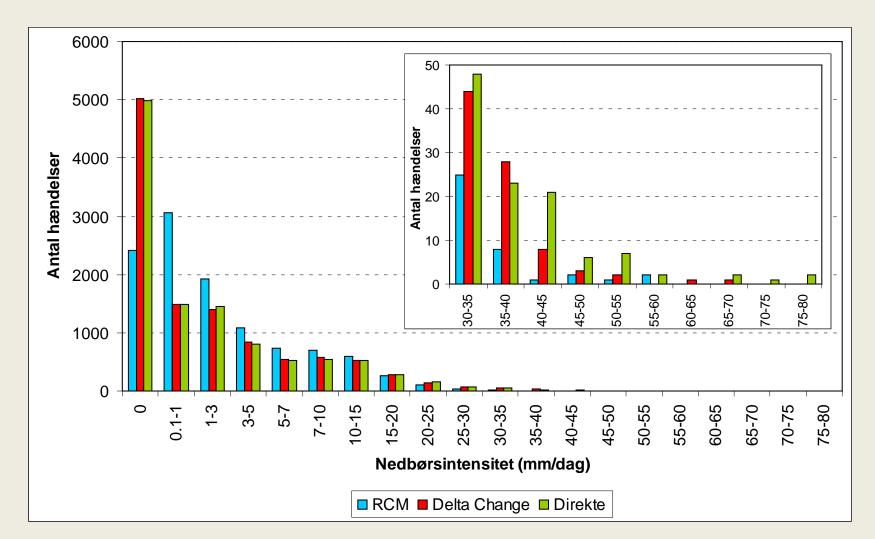
www.geus.dk


Uncertainties on climate models' projections

- Delta change factors on precipitation 2071-2100

Climate change impacts on hydrology The chain of uncertainties

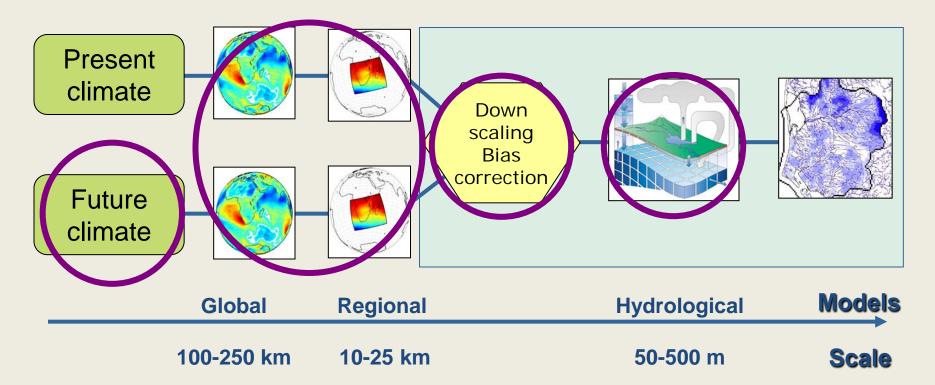
- Emission scenarios
- Climate models (GCM + RCM)
- Downscaling / bias correction



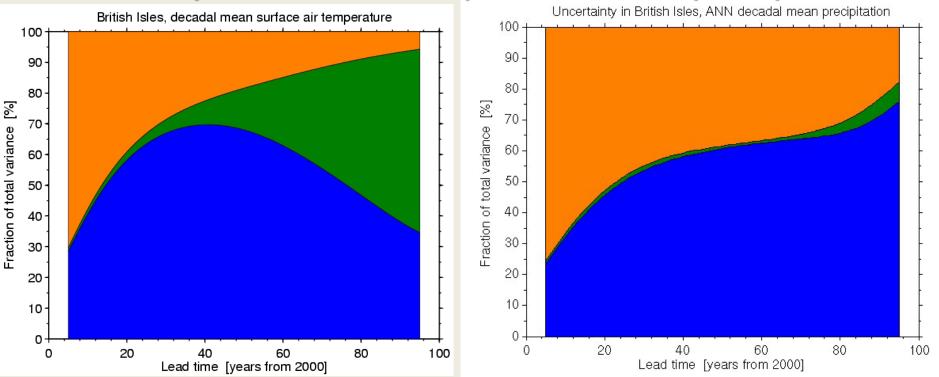
Statistical downscaling/bias correction

- Many different methods for making statistical downscaling → different results
- We cannot know beforehand which downscaling method will turn out to be the best one
- Example comparison of two methods for future precipitation
 - Delta change (monthly correction factors to observed precipitation)
 - Direct method Histogram Equalisation Method (Gamma function correction of RCM simulated precipitation)

GEUS


Statistical downscaling of precipitation - Delta change versus Direct method

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND


Climate change impacts on hydrology **The chain of uncertainties**

- Emission scenarios
- Climate models (GCM + RCM)
- Downscaling / bias correction
- Hydrological model (geology, process equations, parameter values, input data)
- Natural variability of climate system

Natural climate variability Relative importance of different sources of uncertainty (Hawkins and Sutton, 2009 & 2010)

UK - 10 years mean temperature and precipitation

Blue: Uncertainty due to climate models (GCMs) Green: Uncertainty due to GHG emission scenarios Orange : Uncertainty due to internal (natural) variability

Uncertainty in climate change adaptation - General mapping

		Sources of uncertainty						Nature of uncertainty		
Steps in climate change adaptation analyses (chain in uncertainty cascade)		Input data	Model			Context	Multiple know-	Ambi- guity	Epistemic uncer-	Ontologic al uncer-
		uala	Parame-	Model	Model		ledge frames	guity	tainty	tainty
			ter values	techni- cal aspects	struc- ture				(reducible)	(ir- reducible)
				0.00						
Greenhouse gas emissions						XX	XXX	XXX	XX	
Socio-economic scenarios		XX			XX	XX	XXX	XXX	XX	
Future climate (Climate models)	GCMs			XX	XXX				XXX	
	RCMs			XX	XXX				XXX	
	Initial conditions/natural variability	XX								XXX
Downscaling/statistical correction			XXX		XX				XX	XX
Water system impacts (Hydro-ecological models)		Х	XXX	Х	XXX	XX	Х	Х	XXX	Х
Socio-economic impacts (Socio-economic tools)		XX			XX	XX	XXX	XXX	XX	
Adaptation measures		XX	XXX	Х	XXX	XX	XXX	XXX	XXX	ХХ

Refsgaard et al (in preparation) CRES <u>www.cres-centre.dk</u>

Uncertainty in climate change adaptation

- water infrastructure in rural areas, Denmark

	Adaptation							
Type of problem	Climate change Consequence	Risk level	Dominating und	certainty	Option	Cost level	Additional uncertainty	
			Source	Nature			Source	Natur e
Water supply. Changes in groundwater recharge or acceptable influence	Change in how much groundwater can be abstracted in a sustainable manner due to either problems in	High	Climate models + hydro- ecological model parameters + structure	Epistemic	Relocation of groundwater abstraction – influencing also the protection zones (item below) (structural)	Med Same as for impacts		acts
on streamflow in critical low flow periods	aquifer or low flow conditions in stream.		(geology)		Changes in objectives and risk willingness (non- structural)	Low	Multiple frames	Ambi guity
Water supply. Changes in wellfield capture zones	The selected areas for groundwater proctection will be the wrong area.	Med	CHG emissions + climate models + hydro- ecological model parameters + structure (geology)	Epistemic	Increase protection areas High to account for worst case (structural)		Same as for impacts	
					Changes in strategy, increased risk to protect wrong area (non- structural)	Low	Multiple frames	Ambi guity
Inundations of roads	Road traffic interrupted	Med	CHG emissions + climate model	Epistemic+ Ontological	New design to avoid High inundation (structural)		Same as for impacts	
			structure		Close roads + warning in critical periods (non- structural)	Low	Multiple frames	Ambi guity
Undermining of road foundation due to increased groundwater table	Roads deteriorate	Med	Climate models + hydro- ecological model parameters and structure (geology)	Epistemic	New designs to accept high groundwater table (structural)	High	Same as for impacts	
					New designs to avoid high groundwater table (structural)	High		
Refsgaard et al (in preparation) CRES <u>www.cres-centre.dk</u>					Drainage or pumping scheme to keep groundwater table low (structural)	Low		

Strategies to handle uncertainty in climate change adaptation

- Strategy depends on nature of uncertainty
 - Epistemic: reducible by more knowledge
 - Ambiguity: reducible by dialogue and knowledge sharing
 - Ontological: non-reducible → live with it
- Large uncertainties should not postpone actions
 - Some times the uncertainty has no importance for the decision
 - Planning (assess adaptation options) should be made now as a basis for optimal timing of measures
- Adaptation assessments should include cross-sectoral synergies
- Risk perception differs among individuals and stakeholders
- Risk strategies should not be based on status quo attitudes to risk acceptance

Conclusions – Part 3

Uncertainty in climate change

Climate change predictions involves large uncertainties
Uncertainty sources → cascade of uncertainties

 Adaptations to climate change → additional uncertainties, ambiguity important

➔ Adaptive management is about making complex decisions that are robust to uncertain future outcomes