of
earthquakes.
Reference:
[1] Korja, A. and Kosonen, E. M. (eds.) 2015. Seismotectonic framework and seismic source area models in Fennoscandia,
Northern Europe. Univ. Helsinki, Instit. Seismology, Report S-63, 284 p.
http://www.seismo.helsinki.fi/pdf/Seismotectonic_S63_Korja_Kosonen.pdf
[2] Nørbech, T., Engsager, K., Jivall, L., Knudsen, O., Koivula, H., Lidberg, M., Ollikainen, M. & Weber, M., 2008
/media/norsem/norsem_korja.pdf
and Magnús Tumi Guðmundsson.
(2020). Non-surface mass balance of glaciers in Iceland. J. Glaciol.
66, 685–697. doi:10.1017/jog.2020.37Schmidt, L. S., Guðfinna Aðalgeirsdóttir, Finnur Pálsson,
Langen, P. L., Sverrir Guðmundsson and Helgi Björnsson. (2019). Dynamic
simulations of Vatnajökull ice cap from 1980 to 2300. J. Glaciol.
66, 97–112. doi:10.1017/jog.2019.90
/about-imo/news/new-article-on-glacier-changes-in-iceland-over-the-past-130-years
) Measured 1997 and 1999 ice surfaces of Lang‐
jökull and Hofsjökull, respectively. c) Steady‐state glacier
geometries after a few hundred year spin‐up with constant
mass balance forcing.
Figure 3: Simulated response of Langjökull (L), Hofsjökull (H)
and southern Vatnajökull (V) to climate change. The inset
numbers are projected volumes relative to the initial stable
ice geometries
/media/ces/ces_flyer_glacierssnowandice.pdf
to
fschoo
lcurricul
a
Savenij
ean
d
Va
n
de
rZaa
g
(200
0),
Rondinell
ie
t
al
.(
198
3)
7.
Wate
reducatio
n
IWR
M
is
regularl
y
introduce
d
in
educational/capacit
y
buildin
g
program
s
fo
r
wate
r
professional
s
Savenij
ean
d
Va
n
de
rZaa
g
(200
0),
Rondinell
ie
t
al
.(
198
3)
(C
)Governanc
e
4.
Typ
e
o
fgovernanc
e
Consensua
l(bottom-up
)governanc
e
versu
s
top–dow
n
governanc
e
(governanc
e
/media/loftslag/Huntjens_etal-2010-Climate-change-adaptation-Reg_Env_Change.pdf
such as
irrigation, CO2 effects on transpiration, and land use changes affect the water balance to a
lesser extent.
Citation: van Roosmalen, L., T. O. Sonnenborg, and K. H. Jensen (2009), Impact of climate and land use change on the hydrology of
a large-scale agricultural catchment, Water Resour. Res., 45, W00A15, doi:10.1029/2007WR006760.
1. Introduction
[2] The most recent Intergovernmental Panel
/media/loftslag/vanRoosmalen_etal-2009-WRR_2007WR006760.pdf
management, XXVI Nordic hydrological conference, Riga, Latvia August 9-11 2010. Nordic hydrological programme report No. 51. p138-139.
Kurpniece. L., Lizuma, L., Timuhins, A., KolcovaT., Kukuls, I. (2010). Climate Change Impacts on Hydrological Regime in Latvia. Conference on Future Climate and Renewable Energy, Oslo, May 31-June 2, 2010.
Meilutytė-Barauskienė D., Kriaučiūnienė J. & Kovalenkovienė M
/ces/publications/nr/1938
to c. 10% increase
Uncertainty related to choice of GCM
• Changing seasonality (2021-2050 vs 1961-1990)
in Sweden
T2m Precipitation Wind speed
Colored lines represent averages over RCMs forced by the same GCM
Gray field is max/min of all RCM simulations
An example of CC in the next few decades
2011-2040
vs
1961-1990
Why are differences between ensemble
members so large?
Winter (DJF)
M
S
L
P
T
2
/media/ces/Kjellstrom_Erik_CES_2010.pdf
2015, 2025, 2035 and 2050
North (Blanda) East (Karahnjukar) South (Thorisvatn)
Change in average inflow to the main storage reservoirs
Watershed
A
v
e
r
a
g
e
i
n
f
l
o
w
[
m
3
/
s
]
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
Last 50 years
Last 20 years
Last 15 years
Last 10 years
Last 5 years
Temperature corrected
Transformation of climate measurements
•Change in temperature
• 0.75 °C/100y 1950-1975
• 1.55
/media/ces/Linnet_Ulfar_CES_2010.pdf
not representative of present or future climate
conditions?
Winter mean T in Helsinki (1961-2008)
1961-
20081961-
1990
Temperature (°C)
P
r
o
b
a
b
i
l
i
t
y
d
e
n
s
i
t
y
-12 4
Simplest case: change in mean climate,
with no change in the magnitude of variability
If variability changes as well, the two tails of the distribution
(e.g., warm and cold) will be affected differently.
IPCC (2001
/media/ces/RaisanenJouni_CES_2010.pdf