2015, 2025, 2035 and 2050
North (Blanda) East (Karahnjukar) South (Thorisvatn)
Change in average inflow to the main storage reservoirs
Watershed
A
v
e
r
a
g
e
i
n
f
l
o
w
[
m
3
/
s
]
0
2
0
4
0
6
0
8
0
1
0
0
1
2
0
Last 50 years
Last 20 years
Last 15 years
Last 10 years
Last 5 years
Temperature corrected
Transformation of climate measurements
•Change in temperature
• 0.75 °C/100y 1950-1975
• 1.55
/media/ces/Linnet_Ulfar_CES_2010.pdf
) and changing climate (CC:CC)
1. Current climate (CU)
- varying thinning regimes
(0%, 15%, 30%,45%)
2. Changing climate (CC)
- varying thinning regimes
(0%, 15%, 30%,45%)
3. Current (CU) &
changing climate (CC)
- current thinning regime
4. Current (CU) &
changing climate (CC)
- changed thinning regimes
C
l
i
m
a
t
e
s
c
e
n
a
r
i
o
s
M
ea
s
u
r
e
m
en
t
s
o
f
c
l
i
m
a
t
e
p
/media/ces/CES_BioFuels_Flyer_new.pdf
Time
Main assortments
ll d Energy biomassSaw ogs Pu pwoo
Small trees Residues Stumps
5
Use of biomass based energy in Finland
Pellets
1% (0.5 Mm3)
S d tForest residues
and small trees
used as chips
9% (3.4 Mm3)
aw us
9% (3.4
Mm3)
Black liquorTraditional
Energy biomass
46 TWh (55%) qu45% (18 Mm3)firewood
15% (6 Mm3)
Bark
21% (8.4 Mm3)
Energy biomass: 20% of the primary energy production
/media/ces/Alam_Ashraful_CES_2010.pdf
(-33%) during 1970 to 2004 has been smaller than the com-
bined effect of global income growth (77%) and global population
growth (69%); both drivers of increasing energy-related CO2 emis-
sions. The long-term trend of declining CO2 emissions per unit of en-
ergy supplied reversed after 2000. {WGIII 1.3, Figure SPM.2, SPM}
Differences in per capita income, per capita emissions and
energy
/media/loftslag/IPPC-2007-ar4_syr.pdf
o
t
o
-
a
g
e
n
d
a
D
e
f
i
n
e
a
n
d
i
n
v
i
t
e
s
t
a
k
e
h
o
l
d
e
r
s
T
e
c
h
n
i
c
a
l
i
n
p
u
t
a
n
d
v
i
s
i
o
n
s
-
I
n
t
e
r
n
a
l
e
x
p
e
r
t
s
-
s
t
a
k
e
h
o
l
d
e
r
e
x
p
e
r
t
s
F
r
am
e
p
r
o
b
l
e
m
-
t
r
p
s
e
r
v
i
c
e
(
q
u
a
l
i
t
y
)
l
e
v
e
l
s
-
t
y
p
e
s
o
f
s
c
e
n
a
r
i
o
s
A
n
a
l
y
z
e
p
r
o
b
l
e
m
T
e
c
h
n
i
c
a
l
i
n
p
u
t
f
r
/media/loftslag/Outline_for_the_case_Road_maintenance_in_a_changing_climate.pdf
such as
irrigation, CO2 effects on transpiration, and land use changes affect the water balance to a
lesser extent.
Citation: van Roosmalen, L., T. O. Sonnenborg, and K. H. Jensen (2009), Impact of climate and land use change on the hydrology of
a large-scale agricultural catchment, Water Resour. Res., 45, W00A15, doi:10.1029/2007WR006760.
1. Introduction
[2] The most recent Intergovernmental Panel
/media/loftslag/vanRoosmalen_etal-2009-WRR_2007WR006760.pdf
in
ty
N
at
ur
e
o
f
u
n
ce
rta
in
ty
Inp
ut
dat
a
Mo
de
l
Co
ntex
t
Multi
pl
e
knowl
edg
e
fra
m
es
Ambi
guit
y
Ep
istemi
c
un
certaint
y
(re
du
cib
le)
Aleator
y
u
n
ce
rta
in
ty
(ir
red
uc
ibl
e)
Pa
ramete
r
val
ue
s
Mode
l
techni
ca
l
as
pe
ct
s
Mo
de
l
st
ru
ct
ur
e
G
re
en
ho
us
e
ga
s
em
iss
io
ns
X
X
X
X
X
X
X
X
X
X
Socio
-econo
m
ic
scena
rio
s
X
X
X
X
X
X
X
X
X
XX
X
X
X
Fu
tu
re
cl
im
/media/loftslag/2012-Refsgaard_etal-uncertainty_climate-change-adaptation-MITI343.pdf
at the operational/local level.
A calibrated approach (standardized questionnaires and
interviews, expert judgment, and reinterpretation of out-
comes by means of relevant literature) was used to com-
pare the state of affairs in water management in the
selected case-studies.
Adaptive and integrated water management
Given the expected increase of climate-related extreme
events, water governance capabilities
/media/loftslag/Huntjens_etal-2010-Climate-change-adaptation-Reg_Env_Change.pdf