6University of Washington,
Seattle, WA 98195, USA. 7NOAA Geophysical Fluid
Dynamics Laboratory, Princeton, NJ 08540, USA.
*Author for correspondence. E-mail: cmilly@usgs.gov.
An uncertain future challenges water planners.
Published by AAAS
on July 12, 201
1
www.sciencemag.or
g
Downloaded from
1 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org574
POLICYFORUM
combined with opera-
tions
/media/loftslag/Milly_etal-2008-Stationarity-dead-Science.pdf
ORIGINAL ARTICLE
Climate change adaptation in European river basins
Patrick Huntjens • Claudia Pahl-Wostl •
John Grin
Received: 1 July 2008 / Accepted: 24 December 2009 / Published online: 2 February 2010
The Author(s) 2010. This article is published with open access at Springerlink.com
Abstract This paper contains an assessment and stan-
dardized comparative analysis of the current water man
/media/loftslag/Huntjens_etal-2010-Climate-change-adaptation-Reg_Env_Change.pdf
Assessment Re-
port (AR4).
Topic 1 summarises observed changes in climate and their ef-
fects on natural and human systems, regardless of their causes, while
Topic 2 assesses the causes of the observed changes. Topic 3 pre-
sents projections of future climate change and related impacts un-
der different scenarios.
Topic 4 discusses adaptation and mitigation options over the
next few decades
/media/loftslag/IPPC-2007-ar4_syr.pdf
-time and
detects signal characteristics similar to previously observed eruptions using a three-fold
detection procedure based on: 1) an amplitude threshold; 2) the signal-to-noise ratio; and 3) an
emergent ramp-like shape. Data from six Icelandic eruptions was used to assess and tune the
module, which can provide 10–15 minutes of warning for Hekla up to over two hours of
warning for some other
/media/vedurstofan-utgafa-2021/VI_2021_008.pdf
m
J
M5 [C°] -3
obs. [C°] -4
nce 1
re 5. Comp
26); an int
temperatu
this system
y gridded v
picion abo
-Jökulsá w
similar dif
han observ
h elevation
ces the effe
months No
ly only on
high the tem
n band wi
refore be s
onthly tem
an Feb Ma
.2 -3.1 -3.
.3 -4.1 -3.
.1 1.0 0.6
arison of m
erpolation
re is shown
atic differe
alues, see T
ut the qual
atershed; b
ference wa
ations for t
gradient fo
/media/ces/2010_017.pdf
than can be expected to originate from the cauldrons, three to four times the wa-
ter equivalent of the accumulation of snow over the watershed of the cauldrons. It has
been estimated that flow from the cauldrons, in addition to the jökulhlaups, could be
2–5 m3 s 1 at maximum (Vatnaskil, 2005). It is possible that part of the sulfate-rich
groundwater from the glacier comes from the cauldrons
/media/vedurstofan/utgafa/skyrslur/2009/VI_2009_006_tt.pdf
in
estimation of climate change impacts on flooding. Generalisations based on only a few case studies, or
large scale flood assessments using only a few climate scenarios should be avoided in countries with var-
iable hydrological conditions.
2010 Elsevier B.V. All rights reserved.
1. Introduction
Climate change has a multifaceted impact on river discharges:
on the one hand it poses a risk of increased
/media/ces/Journal_of_Hydrology_Veijalainen_etal.pdf