/EPP 2
Stakeholders analysis
26 August 2011 PM/YZ/EPP 3
Stake
h
o
l
d
e
r
s
P
u
b
l
i
c
/
p
r
i
v
at
e
P
o
w
e
r
l
e
v
e
l
(“
n
u
i
s
an
ce”
ca
p
a
c
i
t
y
)
O
r
i
e
n
tat
i
o
n
H
or
s
t
e
n
s
m
uni
c
ipal
i
t
y
(
c
o
m
pe
t
e
n
t
a
u
t
h
ori
t
y
)
P
u
b
l
i
c
S
t
ron
g
Go
v
ernanc
e
N
eighbour mun
i
c
i
p
ali
t
y
P
u
b
l
i
c
S
t
ron
g
Go
v
ernanc
e
Poli
c
y/media/loftslag/Group5-Stakeholders_involvement.pdf
). This can be helpful with respect to
finding a common structure in presenting as well in session reporting (for which angles
mentioned in the opening session statements of the Workshop participants can provide
checkpoints).”
Session rapporteur allocation
M
o
n
d
a
y
2
9
.
8
Y
u
a
n
g
Z
h
e
n
g
A
t
h
a
n
a
s
i
o
s
V
o
t
s
i
s
E
i
v
i
n
d
J
u
n
k
e
r
M
i
c
h
a
e
l
L
a
i
h
o
H
e
c
to
r
/media/loftslag/Guidelines2-for-rapporteurs.pdf
ilmiö
W inter Sprin g
SummerA utumn
Kosteus
Lauha t talve t
Talvitulvat
Jäätävä sade
Hyyde
Kova tuu li
…
Aikaisempi
kevät ja tu lvat
Ku ivuus
Ku ivuvat
vesiva rastot
…
Ku ivuus
Rankkasa teet
sa lamointi
Rakeet
…
Myrskyt
Rankkasateet
Rou ta
Jääkannen
muodostaminen
…
yli y €yli y €Merkittävät3
x - y €x – y €Keskinkertaiset2
alle x €alle x €Vähäiset1
Mahdollisuuden
tunnisteväriRiskin
/media/ces/Keranen_Jaana_CES_2010.pdf
EA Analyse A/S and Optensys
Energianalys will forecast energy system variables, while SINTEF Energy Research will make
assumptions for the energy system in different cases, include new inputs in the EMPS model and
carry out simulations.
Cl
i
ma
t
e
Sc
e
nar
i
os
G
ro
u
p
R
i
s
ø
St
o
c
h
as
t
i
c
v
a
r
i
a
b
l
e
s
Clima
t
e
s
c
e
n
a
r
i
o
NV
E
S
M
H
I
FE
I
N
o
r
w
a
y
S
w
e
d
e
n
F
inla
n
/media/ces/esa_flyer_new.pdf
power delivery
Finances and risk Financial resources concentrated in structural protection
(sunk costs)
Financial resources diversified using a broad set of private
and public financial instruments
Climate change adaptation in European river basins 267
123
Tabl
e
2
Overvie
w
o
fvariable
s
an
d
indicator
s
fo
rAIW
M
Dimensio
n
Variabl
e
Indicato
r
Literatur
e
(A
)Agenc
y
1.
Typ
e
o
fleadershi
p
/media/loftslag/Huntjens_etal-2010-Climate-change-adaptation-Reg_Env_Change.pdf
measures
Downscaling and
statistical correction
Water system impacts
Hydro-ecological models
Socio-economic
scenarios
Socio-economic
impacts
Fig. 2 Structural elements in
the assessment of climate change
impacts and adaptation illustrating
the uncertainty cascade
Mitig Adapt Strateg Glob Change
Tabl
e
1
Ch
aracterisatio
n
o
fke
y
sou
rce
s
o
fun
certaint
y
in
th
eun
certaint
y
casc
ad
ean
d
thei
rnatur
/media/loftslag/2012-Refsgaard_etal-uncertainty_climate-change-adaptation-MITI343.pdf
would lead to a reduction of 20%
of total annual tourist flow to Spain between 2004 and 2080; Hein, Metzger and Moreno
[9] obtain an average decrease up to 14% in 2060 compared to 2004 - result of higher
losses in summer and slight increases in the remainder of the year-.
Nevertheless, some studies offer a more positive outlook. According to the Fundación
Empresa y Clima [7], the tourist
/media/loftslag/ECONOMIC_EFFECTS_OF_CLIMATE_CHANGE_ON_THE_TOURISM_SECTOR_IN_SPAIN.pdf
example
can be given by the low cost still flood risk adaptation by implementing early warning system. But
there is one more suggestion dfor stakeholders to restrict infrastructure in the cities of Horsens.
Fiva PhD Courses : Adaptive management in relation to climate change (august 22 2011 - august 26 2011)
2 / 3
R
es
e
a
r
c
h
Flood
f
r
equenc
y
a
n
d
i
n
t
ensi
t
y
c
o
m
m
un
i
c
a
t
/media/loftslag/Group-1_Scenarios-for-AWM.pdf
Lifandi kennslu stofa í lolags breytingumA natural laboratory to study climate change
Jöklar ÍslandsIcelandic glaciers
Yrlit um íslenska jökla í árslok
Jöklar á Íslandi hafa hopað hratt í rúma tvo áratugi og er rýrnun þeirra einhver helsta aeiðing hlýnandi loslags hérlendis og skýr vitnis burð-
ur um hlýn un ina. Hér er gerð stutt grein fyr ir breytingum á jökl un um síðan um aldamótin
/media/Eplicanámskeið/VAT_newsletter_2018_06.pdf
Capacity (A)
F
r
e
q
u
e
n
c
y
control
future
+0.4std dev (as % of
mean)
-0.68max
-8.32min
-1.74mean
% change
June 2010 15
Time series
450
500
550
600
650
700
Hour
C
a
p
a
c
i
t
y
(
A
)
Typical year of control period
Seasonal average rating
Calculated capacity
450
500
550
600
650
700
Hour
C
a
p
a
c
i
t
y
(
A
)
Typical year under future scenario
Calculated capacity
Seasonal average
/media/ces/Cradden_Lucy_CES_2010.pdf