climate changes between the CMIP3 and ENSEMBLES
simulations 15
4. Impact of RCM data on forecasts of climate change 18
5. Probabilistic projections of temperature and precipitation change 24
5.1 Best estimates and uncertainty ranges of temperature and precipitation change 24
5.2 How probably will temperature increase (precipitation change) by at least X°C (Y%)?
28
6. Conclusions 34
References
/media/ces/D2.3_CES_Prob_fcsts_GCMs_and_RCMs.pdf
Veðurstofa Íslands
2 Almannavarnadeild Ríkislögreglustjóra
3 Jarðvísindastofnun Háskólans
4 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna
5 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Pisa
6 Jarðvísindadeild Háskóla Íslands
7 Agricultural University of Iceland
8 Consultant
Skýrsla nr. Dags. ISSN Opin Lokuð
VÍ 2020-011 Desember 2020 1670-8261 Skilmálar:
Heiti skýrslu
/media/vedurstofan-utgafa-2020/VI_2020_011_en.pdf
to increase in Finland by 13–26% by the 2080s (Ruosteenoja
and Jylhä, 2007) and extreme precipitations are expected to in-
crease (Beniston et al., 2007). On the other hand, temperature in-
creases of 2–6 C by the end of the century are estimated to
decrease the snow accumulation by 40–70% by the same period
(Vehviläinen and Huttunen, 1997; Beldring et al., 2006; Ruosteeno-
ja and Jylhä, 2007
/media/ces/Journal_of_Hydrology_Veijalainen_etal.pdf
st
c
o
ve
r
(%
)
8 x 8
y = -17.1Ln(x) + 67
R2 = 0.82
F
o
re
st
c
o
ve
r
(%
)
4 4
y = -4.2x + 65
R2 = 0.94
30
40
50
6
0 2 4 6
l ti it
F
o
re
st
c
o
ve
r
(%
)
2 2
Hypothetical aggregation error
by upscaling non-linear relationships
Observed from hypothetical exampleTheo etical under inning (Rastetter, 1992)
Spatial scale – Dominant cells
Conclusions - scale
• “Scale” has been on the (land use
/media/loftslag/Kok_1-scenarios-lecture-1.pdf
¼ cx
sz ¼ csx
Multiplication and Division: z ¼ xy or z ¼ x=y
sz
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffisx2þsy2þ/s
J.C. Refsgaard et al. / Environmental Modell
z x y
available data, knowledge gaps, and qualitative uncertainties).
(5) Elicit extremes of the distribution. (6) Assess these ex-
tremes: could the range
/media/loftslag/Refsgaard_etal-2007-Uncertainty-EMS.pdf
............................................................................................................ 4
3. Best estimates of temperature and precipitation change................................................ 7
4. How certainly will temperature and precipitation increase? ....................................... 10
5. Uncertainty ranges and quantiles of temperature and precipitation change .............. 12
6. Hindcast verification of the resampling ensemble
/media/ces/raisanen_ruosteenoja_CES_D2.2.pdf
G
u
i
n
e
a
B
a
r
r
i
e
n
to
s
P
a
t
r
i
c
k
D
r
i
s
c
o
l
l
A
n
j
a
W
e
j
s
T
o
mm
y
C
h
a
n
K
a
r
o
l
i
i
n
a
P
i
l
l
i
-
S
i
h
v
o
l
a
J
u
s
s
i
Y
l
h
ä
i
s
i
K
a
r
e
n
L
u
n
d
g
r
e
n
V
ä
i
n
ö
N
u
r
m
i
J
i
a
o
X
i
H
a
n
s
-
P
a
u
l
V
e
l
e
m
a
p
l
e
n
a
r
y
1
(
o
p
e
n
i
n
g
)
X
s
e
s
s
i
o
n
1
.
1
X
s
e
s
s
i
o
n
1
.
2
X
s
e
s
s
i
o
n
1
.
3
X
s
e
s
s
i
o
n
1
/media/loftslag/Guidelines2-for-rapporteurs.pdf